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ABSTRACT

Reception of one or more signals, overlapping in frequency and time with the desired

signal, is commonly called cochannel interference. Joint detection is the optimal minimum

probability of error decision rule for cochannel interference. This dissertation investigates

the optimum approach and a number of suboptimum approaches to joint detection when

a priori information based in fields, or sets of transmitted symbols, is available. In the

general case the solution presents itself as a time-varying estimation problem that may be

efficiently solved with a modified Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm.

The low-entropy properties of a particular signal of interest, the Automatic Identifi-

cation System (AIS), are presented. Prediction methods are developed for this signal to be

used as a priori information for a joint field-based maximum a posteriori (MAP) detector.

Advanced joint detection techniques to mitigate cochannel interference are found to have

superior bit error rate (BER) performance than can be obtained compared to traditional

methods.
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EXECUTIVE SUMMARY

Many receivers today operate in an interference-limited environment. In a dense

environment, the performance of a receiver is limited by interference from multiple signals

at the receiver rather than signal-to-noise ratio. In the interference-limited environment

there is a diminishing return from investing additional resources into improving traditional

receiver parameters such as noise figure. Advanced processing techniques exist that can

help recover information that would otherwise be lost using a single-channel receiver [2].

This dissertation investigates some of these techniques.

Interference may originate from many sources: users on the same or adjacent fre-

quency band, unintended emissions, intermodulation, etc. This work investigates inter-

ference from cochannel information bearing signals. Cochannel interference is commonly

defined as the reception of two or more signals at the receiver overlapping in frequency and

in time.

Although multi-user detection is a mature research field [2], little prior research has

focused on low-entropy signals. Optimal detection uses all the available information to

make a decision. The optimal joint detection techniques are often dismissed due to the

complexity of the receiver. Situations exist where this complexity is justified and is the

most cost effective way to recover a signal. The field-based maximum a posteriori (MAP)

joint detection algorithm uses the available a priori information to aid in jointly making a

decision of what values are sent. Conceptually it is not difficult to understand; the idea is

to select the combination of transmitted signals that maximize the a posteriori probability

of a transmitted field. Let A be a N × Ns matrix of the transmitted symbol vectors

A = {α1α2 . . .αNs}, where Ns is the number of signals and N is the length of each

vector. The optimum receiver (minimizing the probability of incorrect A) is defined as

the MAP receiver [3], selecting the most probable A given the received vector r. Finding

the most likely set of transmitted signals, Â, is now a combinatorics problem; try all

2NNs permutations of A and select the one that maximizes the a posteriori probability.

This method is impractical for all but the shortest of messages. This research investigates

efficient methods of incorporating the information available at a receiver in order to make

a decision.

The Automatic Identification System (AIS) is a ship- and land-based tracking and

communications system operating in the very high frequency (VHF) maritime band. The

xxiii



primary function of AIS is to provide information for surveillance and the safe navigation of

ships [1, 4]. The AIS typically sends ship-based tracking messages indicating position and

state information at intervals of 2−10 seconds . This dissertation uses the AIS signal as an

example of a signal with the following properties: narrowband, cochannel and low-entropy.

The AIS signal is shown to have significant redundancy of information content from message

to message. Analysis of the AIS data suggests a 168-bit AIS packet contains approximately

20 bits of new information. This research investigates the low-entropy property of the AIS

signal and presents experimental results quantifying this property.

This work develops the Joint Field-Based MAP algorithm in order to achieve the

goals stated above. By incorporating a priori information from the signal sources, this

detector out-performs maximum likelihood (ML) based joint detectors. The field error

rate (FER) performance gain is highly dependent on the specific signal characteristics.

Here, results are presented for representative signals that show gains of approximately 3

– 18 dB over the current state-of-the-art. This gain does come at a cost. There must

be a source of a priori information; this may be previous signal receptions or some other

source of side information. Without knowledge of one or more of the cochannel signals

there will be no gain in performance. There is also a processing cost. Implementing the

Joint Field-Based MAP detector is both more computationally costly and more difficult to

set up than that of the joint ML detection. The complexity of the Joint Field-Based MAP

detector is exponentially dependent on both the number of uses and the field length. A

complexity reduction is possible by recognizing that some field values occur with negligible

probability. This technique significantly reduces the computational cost while incurring a

small penalty in FER performance.

This work focuses on advanced reception techniques that are of particular relevance

to the military. Most of these techniques are applicable when there is sufficient extra

processing capability available. These techniques are tailored toward asymmetric com-

munications; the scenario where there are existing transmitters and an advanced receiver

platform. Although this work uses the AIS signal as an example, it is envisioned that

with adequate processing resources these algorithms can be used to improve the bit error

rate (BER) performance of many other systems.

This work presents simulation and analytical bounds demonstrating the benefit of

using these advanced detection techniques on cochannel signals.
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I. INTRODUCTION

As the density of wireless transmitters increases, cochannel interference becomes

the major limitation to the performance of a communications receiver. When a receiver is

operating in an interference-limited environment additional techniques, beyond improving

traditional receiver parameters, must be employed to increase performance. Interference

rejection techniques such as adaptive equalization, the constant modulus algorithm, and

various non-linear techniques can all be used to help address the cochannel interference

problem by attempting to remove the undesired interferer [5]. These interference rejection

techniques are not optimal. If multiple receivers are available, array processing techniques

can be used to attenuate the undesired signal [6]. Although array processing can pro-

vide great performance gains in a cochannel interference environment the requirement for

multiple antennas is often impractical. This work focuses on single-antenna joint detection

techniques [2]. With joint detection all of the signals are demodulated simultaneously. This

method can be shown to satisfy an optimality criterion (minimum probability of error) and

does not require multiple antennas.

Some basic definitions should be given here.

The term cochannel refers to two or more signals arriving at a receiver overlapping

in frequency and time [7]. The signals may all be desired, or may consist of both desired

and undesired signals.

The term narrowband refers to signals with minimal excess bandwidth i.e., the

bandwidth beyond the Nyquist bandwidth of 1
2Ts

, where Ts is the symbol period [8]. It is

possible to design a signaling waveform with a large amount of excess bandwidth, many

times that of the Nyquist bandwidth, such that a single-channel receiver performs well

in the presence of multiple cochannel signals. For example, code division multiple access

(CDMA) is a technique that uses waveforms with excess bandwidth to enable simultaneous

users. Other multiple access techniques, such as the time division multiple access (TDMA)

method, typically do not use a waveform with excess bandwidth.

The term low-entropy describes an information source that has other than a uni-

form distribution (some symbols or sets of symbols are more likely than others) [9]. The

low-entropy property of a signal can be exploited to achieve better bit error rate (BER)

performance in a detector.
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Figure 1.1: Incorporating All Knowledge into the MAP Receiver

What is desired is an algorithm that uses the received signal and all of the other

information available to make a decision. The problem can be formulated as follows: Let

αk be the length N symbol column vector transmitted by the k-th user. Let A be a N×Ns

matrix of the transmitted symbol vectors A = {α1α2 . . .αNs}, where Ns is the number

of signals. The optimum receiver (minimizing the probability of incorrect A) is defined

as the maximum a posteriori (MAP) receiver [3], selecting the most probable A given the

received vector r.

Â = arg max
A∈A

Pr(A|r) (1.1)

where A is the set of possible values for A. where r is the received vector (possibly raw

samples, possibly pre-processed by some yet to be considered demodulator). What we

really want to maximize is

Â = arg max
A∈A

Pr(A|r; e) (1.2)

Where e is the set of other information known about the problem, as illustrated in Fig-

ure 1.1.
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This dissertation works towards creating an efficient realization of Equation 1.3,

ultimately resulting in

Â = arg max
A∈Al

Pr(A|r; e), (1.3)

where Al is a subset of A containing the values of A with non-negligible probability.

A. NOTATION

Throughout this work the following notation is used unless otherwise stated. Vec-

tors are assumed column vectors and are represented as lower case bold face symbols, a.

Matrices are written in upper case bold face, A. Transpose and complex conjugate trans-

pose are written as (·)T and (·)H respectively. Statistical expectation is written as E{·}.
An estimate of a random variable is written as (̂·). Brackets are used to index into a vec-

tor, x[n] is the nth element of the vector x; parentheses represent continuous time values,

x(t). A vector with a prime, y′, indicates that it is an interleaved vector. A probability is

represented with Pr[·]; p(·) indicates a probability density function (PDF).

B. COCHANNEL SIGNALS

Cochannel interference is said to occur when two or more signals are received in the

same frequency band at the same time. Figure 1.2 illustrates a time-frequency plot with

intensity representing the magnitude of two cochannel signals. Notice that the signals in

Figure 1.2 overlap in both frequency and time, but portions of the signal do not overlap.

This gives hope that the signals can be separated.

Some communications systems such as CDMA use waveforms which are designed

to operate when there is cochannel interference [2]. For a system using CDMA, each

waveform is separated in code space such that the signals are orthogonal1, or approximately

orthogonal to each other. If the signals are orthogonal then the optimum receiver may be

realized by constructing a set of N matched filters, one for each desired signal, followed

by N independent decision rules. In this case the optimal decision rule can be derived for

each signal by observing the output of a single matched filter.

1Orthogonal is used here to mean the inner product of the underling waveforms is equal to 0, i.e.,∫
ψ1ψ2dt = 0
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Figure 1.2: Cochannel Signal Example

Other characteristics that allow signal orthogonality (or approximate orthogonality)

when the signals occupy the same frequency band at the same time are polarization, phase,

and spatial diversity [2, 7, 8]. The focus of this dissertation is the problem of separating

cochannel signals when the signals are not directly separable by any of the aforementioned

methods.

C. AUTOMATIC IDENTIFICATION SYSTEM (AIS)

An example of a system subject to potential cochannel interference is the recep-

tion of the ship-based AIS signal on a high-altitude platform such as an unmanned aerial

vehicle (UAV) or satellite [10]. The AIS is a ship/land based tracking/communications

system operating in the VHF maritime band. The primary function of AIS is to provide

information for the safe navigation of ships and safety of life at sea (SOLAS) [1]. The

AIS sends ship-based tracking messages indicating position at update intervals typically

between 10 and 2 seconds. The International Maritime Organization (IMO) has ruled that

all ships of 300 gross tons and greater must carry an AIS transponder by 2008 [1].

The AIS uses self organized time division multiple access (SOTDMA) to separate

users. Each user within line-of-sight (nominally 55 km) attempts to find an unused time

slot. Each user effectively creates his own cell centered around his ship. In general, there

is no cochannel interference problem for users on the surface of the Earth; users of the

same time slot are either not within line-of-sight or are far enough away for the message

4
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Figure 1.3: Example of Reception from Multiple Cells

importance to be relatively low. A potential interference issue arises when the reception

platform has a field-of-view larger than the nominal 55 km as illustrated in Figure 1.3.

The coded cells represent areas where the SOTDMA algorithm has separated the signals

via TDMA. Cells of the same line style indicate transmissions during the same time slot.

The AIS is not the only signal that can benefit from joint demodulation methods.

There are other examples of low-entropy signals that can benefit from these methods such

as radio frequency identification (RFID), and signals from sensor networks.

1. Simultaneous Cochannel Signal Receptions

Here, a model is developed in order to investigate the likelihood of cochannel recep-

tion. Consider N synchronous users, all within line-of-sight of a single receiver, each with

probability p of transmitting at time n. Let the discrete random variable C be the number

of cochannel receptions at an instantaneous observation. C is assumed to be a binomial

random variable with distribution [11]

Pr(C = k) = pk(1− p)(N−k)

(
N

k

)
. (1.4)
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This model describes a shared network of N synchronous users grouped into cells where p

is the probability of any user transmitting at time n.

As an example, consider 40 cells, each cell with M users, where each user has a

probability of transmission p = 5/2250 ≈ 0.002. This corresponds to an AIS reporting rate

of five reports per minute. Figure 1.4 illustrates the probability of receiving k cochannel

transmissions at any one time. The peak of each curve corresponds to the most likely num-

ber of receptions for a particular source density. As the number of users per cell increases,

the probability of simultaneously receiving more than one signal at a time increases. Notice

that for a low density (low number of users per cell) the probability of cochannel reception

is low. As the density of users goes up, the most likely number of simultaneous receptions,

k, increases. For this example, with 37.5 users per cell, the most likely outcome is simul-

taneous reception of three signals. The important thing to understand from this example

is situations exist where a receiver is likely to receive a small number (less than three or

four) cochannel receptions. Although the work in the dissertation generalizes to N users

the focus is on two or three users.
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D. COCHANNEL SIGNAL RECOVERY TECHNIQUES

In order to successfully jointly demodulate cochannel signals there must be some

distinguishing feature between them. In each case the distinguishing feature leads to

underlying signaling waveforms which have a normalized cross-correlation coefficient [2]

with magnitude less than one.

1. Frequency Separation From Doppler

If the transmitters of the signals si(t) have different relative velocities with reference

to the collection platform they will appear shifted in frequency with respect to each other at

the receiver. This frequency separation can be exploited in the receiver. For narrowband,

high frequency signals with a large difference in relative velocities, it is quite possible that

the relative motion would completely separate the signals at the receiver such that they

are orthogonal. As an example, the space shuttle at low earth orbit (LEO) receiving the

AIS signal would see a maximum frequency separation of approximately 4 kHz. While this

is enough to assist in joint demodulation, it is not enough to separate the signals such that

they are orthogonal, so single-channel demodulation techniques are not effective.

2. Multiple Receivers

Multiple receivers provide an additional level of diversity that may be exploited.

Much work has been published in the area of beam-forming with multiple coherent re-

ceivers; see [6, 8] for a thorough overview. Although this is a promising area, multi-

ple receivers result in additional cost are sometimes impractical, therefore this disser-

tation will focus on single-antenna architectures. Single-antenna receiver architectures

for cochannel interference mitigation are often referred to as Single-Antenna Interference

Cancellation (SAIC) [7].

3. A priori Symbol Probabilities

Another promising area is taking advantage of a priori symbol probabilities when

performing the demodulation. If data contained in the signal si(t) are not random but

known or partially known, a joint receiver structure can be designed that incorporates this

knowledge.

7



Table 1.1: Binary Representation of Position

Binary Position (m)

00000000 ±0 meters
00000001 +1 meters
00000010 +2 meters
11111111 −1 meters
11111110 −2 meters
. . . . . .

Consider a transmitted position value (x). The position value, in meters, is mapped

to an 8 bit two’s complement representation (Table 1.1). The bits are mapped to binary

symbols α ∈ {−1, 1}, and transmitted through an additive white Gaussian noise (AWGN)

channel. This position value is transmitted via a binary antipodal modulation scheme.

The transmitted signals are then received along with AWGN, and are coherently detected.

First, suppose there is no a priori information available for the position. The

probability of receiving an incorrect position Pe is given by [8]

Pe = 1− (1− Pbit error)
8, (1.5)

where Pbit error is given by [8]

Pbit error = Q

(√
Ed

2N0

)
, (1.6)

Q(x) is defined as

Q(x) =

∫ ∞

x

1√
2π
e−τ2/2 dτ, (1.7)

and Ed is the squared Euclidean distance between transmitted symbols for binary 1 and

binary 0

Ed = (α0 − α1)
T (α0 − α1) (1.8)

where α0 and α1 are the symbols used to represent a binary 0 and a binary 1 respectively,

and N0 is the one-sided noise power spectral density.
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Now suppose it is known that the actual position value is either 15 or 16 meters,

x ∈ {15, 16}, with equal likelihood. The binary representation of the message therefore is

either

00001111

or

00010000

Although these two values differ in information by one bit, the Hamming distance2 in the

“code words” is 5 bits. Not only has the problem been reduced from selecting one of 28

sequences to that of selecting one of 21 sequences, the sequences are further separated in

Euclidean space, making the decision less error prone. Here, the probability of position

error is only

Pe = Q

(√
5Ed

2N0

)
, (1.9)

where Ed is defined as the squared Euclidean distance between the symbols representing

a binary 1 and a binary 0 as in (1.8). This is a significant improvement in probability of

error over the first case.

Now suppose the position was known to be either 16 or 17 meters, x ∈ {16, 17},
with equal likelihood. The positions are represented as

00010000

and

00010001

respectively. In this case, the Hamming distance between words is only one yet, by using

this a priori knowledge of the transmitted values the decision is selecting one of 21, instead

of selecting one of 28 possibilities. The probability of position error is then given by

Pe = Q

(√
Ed

2N0

)
, (1.10)

where Ed is given by (1.8).

2Given two strings of equal length, the Hamming distance is the number of positions that the strings
differ [12]
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There are two challenges to exploiting a priori probabilities in a receiver. The first

is the calculation of the a priori probabilities, and then mapping this information to the

received symbols. Estimates for physical quantities such as position, velocity, time, etc.

can be performed with a variety of predictors. The second is the increased complexity of

the receiver. For the example above where the transmitted value is one of two equally

likely position values, there is little increase in complexity. For a large number of possible

position values that are not equally likely, the decision rules become complex.

4. Time-of-Arrival Offset

Many communications systems such as AIS are packet-oriented. For some collection

scenarios even packets in a synchronized network could arrive with a time offset. Over-

lapping packets should be treated as a special case. Three situations are illustrated in

Figure 1.5: clean reception of a packet, clean reception of the beginning or end of a packet,

and overlap of two packets.

Clean reception can be used for calculation of symbol probabilities. The clean

beginning or end of a packet can be used for phase and frequency estimation. The region

of overlap is where the joint detection techniques are used to recover the signals.

5. Multiple Message Integration

If a data source transmits the same information in multiple messages, soft deci-

sions from each message can be combined to obtain a more reliable estimate of what was

transmitted.

E. SIMPLE MITIGATION EXAMPLE

It is instructive introduce a simple example of cochannel interference mitigation.

Consider two synchronous symbol streams:

n = 0 1 2 3 4

α(1)[n] = {−1, +1, +1, −1, −1}
α(2)[n] = {−1, −1, +1, +1, −1}
r[n] = α(1) + α(2) = {−2, 0, +2, 0, −2}

10
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Given the received stream r a reasonable estimate of α(1) and α(2) is

ˆα(1) = ˆα(2) = {−1,±1,+1,±1,−1}. (1.11)

There are two locations for possible errors in each of the received streams, the locations

at n = 0 and n = 3. At both of these locations, if the bit for one stream (α(1) or α(2)) is

known the bit for the other could be determined.

Now suppose that the data sequences α(1) and α(2) are sampled at twice the symbol

rate such that:

n = 0 1 2 3 4 5 6 7 8 9

α′(1)[n] = α(1)
[
bn

2
c
]

= {−1, −1, 1, 1, 1, 1, −1, −1, −1, −1}
α′(2)[n] = α(2)

[
bn

2
c
]

= {−1, −1, −1, −1, 1, 1, 1, 1, −1, −1}
r′ = α′(1) + α′(2) = {−2, −2, 0, 0, 2, 2, 0, 0, −2, −2}

.

This provides no more information than the first case.

Now suppose that the symbol timing from s1 and s2 is received such that s2 is

delayed by Ts/2 and this delay is known at the receiver. This delay could be caused by

unsynchronized transmitters or path length differences in synchronized transmitters.
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n = 0 1 2 3 4 5 6 7 8 9 10

α′(1)[n] = α(1)
[
bn

2
c
]

= {−1, −1, 1, 1, 1, 1, −1, −1, −1, −1 0}
α′′(2)[n] = α(2)

[
bn−1

2
c
]

= {0 −1, −1, −1, −1, 1, 1, 1, 1, −1, −1}
r′′ = α′(1) + α′′(2) = {−1, −2, 0, 0, 0, 2, 0, 0, 0, −2, −1}

.

The two transmitted sequences may now be resolved from the received sequence. An

algorithm for recovering α(1) and α(2) is as follows.

initialization:

α̂(1)[0] = r′′[0] (1.12)

α̂(2)[0] = r′′[1]− α̂(1)[0] (1.13)

recursion:

α̂(1)[k] = r′′[2k]− α̂(2)[k − 1] (1.14)

α̂(2)[k] = r′′[2k + 1]− α̂(1)[k] (1.15)

This example can be extended to continuous time digital communications signals

received by a bank of matched filters sampled at the symbol rate, followed by a joint

detection algorithm. Because of the recursion, a single error at step n can lead to multiple

errors for later steps. The propagation of errors is investigated further in Chapter V and

Chapter VII.

F. IMPORTANCE OF THIS RESEARCH

Multi-user detection is a mature research field, yet there are still some areas where

new contributions can be made; little work has focused on low-entropy signals. This work

focuses on the reception of low-entropy signals from simple (no advanced coding techniques)

transmitters with an advanced single-antenna receiver. The first assumption is that the

transmitter is not generating signals intended for joint reception, and the transmitted

signals have some degree of predictability. The second assumption is that the receiver has

processing resources available to implement advanced algorithms. This research extends
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prior techniques of joint reception to this scenario, allowing for successful detection of

signals with a lower error rate than was previously possible.

G. CONTRIBUTIONS

The major original contributions of this work are the following:

• A maximum likelihood sequence detection (MLSD) for a bit stuffed data source.

This detector gives superior BER performance compared to the ML symbol-by-

symbol detector for the same signal-to-noise ratio (SNR) (a gain of 0.2 – 1.0 dB).

• An AIS communications state predictor and demonstration of the performance for a

representative data set. The communications state field in the AIS message contains

important synchronization information that can be used to predict when it is likely

another similar message will be sent.

• Prediction method for AIS field data; including the latitude and longitude fields,

and simulation of the performance of the prediction methods. The 27 bit longitude

field is shown to contain approximately four bits of new information once a single

message has been received.

• A Joint Field-Based MAP detector for cochannel signals. This detector results when

a priori information is available for fields of data.

• A method of state reduction; by ignoring states with negligible probability (similar

to the algorithms presented in [13, 14]). State reduction becomes necessary for the

general solution to make the problem computationally feasible.

• An analysis of time-of-arrival variation for AIS packets. Accurate estimation of

timing parameters is an important component of the optimum detector.

• An analysis of the reporting accuracies for the state information fields in an AIS

message, for example, the reporting precision for the longitude and latitude fields

are found to vary from AIS to AIS.
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H. DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows: Chapter II provides an

introduction to some fundamental concepts of joint detection and a full literature review.

Chapter III provides a complete overview of the AIS and presents some experimental re-

sults demonstrating the “low-entropy” property of this signal. Chapter IV provides an

overview of prediction methods and develops predictors for the AIS signal specifically. It

provides experimental results showing the performance of the predictors on collected data.

Chapter V develops the MLSD for a bit-stuffed data source; bounds on BER performance

are developed and compared to simulation. Chapter VI is an overview of the multicat-

egory classification problem that results from a field-based MAP detector based on field

a priori information. The single-channel detector is then extended to the special case of

synchronous cochannel reception. Bounds on performance for the single-channel and syn-

chronous cochannel example are developed and compared with simulation. Chapter VII

extends the results of Chapter VI to the general case of asynchronous signals. In this ex-

tension, a time-varying trellis is developed to carry forward a priori information from each

field. An efficient trellis traversal method is presented. Finally, Chapter VIII summarizes

the results of this work, provides guidance for the practical implementation of some of this

ideas from this work, and discusses areas of future research.
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II. PRIOR WORK

This chapter provides a history of prior work in the area of cochannel interfer-

ence mitigation and multi-user detection. A review of other authors’ interest in AIS is

presented. An overview of prior research in both coherent and non-coherent Gaussian min-

imum shift keying (GMSK) receivers is developed. Finally, a review of the fundamentals

of communications theory required later in this work is provided.

A. AIS

In this dissertation, AIS is the exemplar low-entropy signal considered for joint de-

tection. There has been some interest in collection of AIS from high-altitude unmanned

aerial vehicle (UAV) and from space [15–17]. In [17], the authors discuss the future of mar-

itime surveillance using micro-satellites; they investigate collecting radar pulses and/or AIS

signals along with satellite-based synthetic aperture radar (SAR) imagery. The authors also

discuss the Norwegian micro-satellite NSAT-1 which is aimed at demonstrating detection

and direction finding on maritime X-band radars.

As more ships are equipped with AIS and as the next class of low power AIS (Class

B systems) become available, cochannel interference is expected to become more of a

problem [18]. In [17], the authors discuss the potential interference issues associated with

collection of AIS from space. A Norwegian student project, NCUBE, is looking into the

feasibility of collecting AIS from space. In [17], the authors hint at “advanced on-board

processing” to enable a satellite to handle more messages than would otherwise be possible

from a single receiver.

In [16], the authors discuss some modifications to AIS to support Long Range Iden-

tification and Tracking (LRIT) in an effort to increase global maritime domain awareness.

B. GMSK

GMSK is the modulation scheme used in the AIS. GMSK is a popular modulation

technique when spectral efficiency and constant modulus is desired. A constant modulus

signal requires a less complicated amplifier stage at the transmitter making this an attrac-
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tive scheme. Murota [19], investigates GMSK modulation for what has become today’s

Global System for Mobile Communications (GSM) cell phone systems. Murota examines

spectrum manipulation of minimum-shift keying (MSK) by introducing a pre-modulation

Gaussian low-pass filter (LPF). Murota explores the general properties of GMSK, error

performance, and bandwidth consumption, and investigates some implementations.

GMSK is a continuous-phase modulation (CPM) signal with a Gaussian filter, g(t).

The complex baseband representation of a CPM signal is given by:

z(t) = A exp(jφ(t; α)), (2.1)

where A is the signal amplitude, assumed to be one hereafter, and φ(t; α) is the phase

term whose current value depends on all previous symbols (αn),

φ(t; α) = hπ
∑

n

αnq(t− nTs). (2.2)

Here, Ts is the symbol period and h is the modulation index, assumed to be a rational

number. The modulation index h is proportional to the maximum phase change per symbol

period. The maximum phase change per symbol period is hπ/2 radians. The information

bits are mapped to symbols αn

αn ∈ {−1,+1}, (2.3)

and q(t) is the integrated pulse shape

q(t) =

∫ t

0

g(τ) dτ. (2.4)

For GMSK g(t) is the pulse response of a Gaussian filter,

g(t) = rect(t/Ts) ∗
1√

2πσ2T 2
s

exp

(
−t2

2σ2T 2
s

)
, (2.5)

where σ =
√

ln(2)/2πBTs [20], ∗ denotes convolution, and rect(t/Ts) is defined as

rect(t/Ts) =

1/Ts |t| < Ts/2

0 |t| > Ts/2
. (2.6)
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The pulse response g(t) can be written as a difference of Q functions1,

g(t) =
1

2Ts

[
Q

(
2πBTs

t− Ts/2

Ts

√
ln(2)

)
−Q

(
2πBTs

t+ Ts/2

Ts

√
ln(2)

)]
, (2.8)

where BTs is the time-bandwidth product of the pulse response g(t), and B is the 3 dB

bandwidth of the Gaussian filter.

Typically g(t) will be truncated to L symbol periods, depending on the value of

BTs, such that g(t) is nonzero on the interval [0, LTs] and symmetric around LTs/2. The

integrated phase function, q(t), is nonzero on the interval [0,∞) and is constant 1/2 for

values of t > LTs [8].

CPM signals are in general non-linear; they can not, in general, be represented as

a superposition of amplitude modulated pulses. Laurent [21] shows that for finite pulse

response, g(t), any binary CPM signal can be represented as a superposition of 2L−1 am-

plitude modulated pulses. This is an extension of the well known representation of MSK

as offset quadrature phase shift keying (OQPSK). In [22], the authors develop a minimum

mean-square error (MMSE) pulse representation of CPM signals, and provide a supple-

mentary proof of the Laurent representation. In [23], the authors investigate modulator

and demodulator simplifications based on the Laurent representation when the modulation

index h = 1/2.

In [24], the authors show that for small modulation index, approximately less than

0.5, the performance gain from using additional pulses after the first pulse in the Laurent

representation is minimal. In [25], the authors compare the performance of a MLSD using

only the “main pulse”, referred to as the AMP-MLSD. They show the BER performance

degradation from using only the main pulse in the MLSD is a fraction of a dB. The

importance of the Laurent representation is that only the first few terms in the sum are

1The Q-function is defined as

Q(t) =
∫ ∞

t

1√
2π
e−τ2/2 dτ (2.7)
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needed, thus reducing the complexity of a receiver. A full description of the Laurent

representation is provided in Appendix A.

C. SYNCHRONIZATION

Carrier phase and frequency information are required for coherent detection of

GMSK signals. Typically this is accomplished with an initial estimate from a known

training sequence followed by some form of phase tracking algorithm.

Boashash [26], provides an exhaustive overview of estimation techniques for in-

stantaneous frequency and, by extension, phase. He covers various maximum likelihood

estimate (MLE) techniques as given in Kay [27], and model-based methods such as mod-

eling the phase term as a linear equation and using least squares to develop an estimate

of frequency and phase as in [28]. In [28], Tretter shows that for high SNR the frequency

estimate based on fitting a line to the unwrapped phase term has the same variance as the

Cramer-Rao bound. In [29], Hansen provides an excellent tutorial on phase and frequency

estimation and provides additional examples.

In [30], the authors investigate a method of jointly estimating both data and timing

in the presence of intersymbol interference (ISI). The authors model the ISI as a Markov

chain, and model the timing variation as a random walk.

Rice, et al. [31], discuss data-aided phase estimation for GMSK using only the first

Laurent pulse. They show that the bias of the ML estimate in [32] is due to the edge effects

of the estimation in that paper. Mengali and D’Andrea [32] serves as an excellent refer-

ence for synchronization techniques of sampled signals. It provides a thorough theoretical

background without losing sight of implementation details. The authors cover both opti-

mal and suboptimal techniques, and provide closed form solutions for performance where

practical.

Harris, et al. [33], discusses timing synchronization using polyphase filters. The

authors address the problem of re-sampling and interpolating after a matched filter by

implementing the matched filter as a polyphase filter bank.

In [34], the authors discuss joint carrier-phase and symbol-timing for coherent CPM

receivers.

In [35], the authors show that the Cramer-Rao bound (CRB) for data aided timing

or carrier phase recovery varies with training sequence.
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There are various methods that combine symbol and channel estimation into the

same problem. Reader, et al. [36] introduce a Blind Maximum Likelihood Sequence

Detection (BMLSD) where the estimation of the channel parameters is included in the

derivation of the MLSD. In [37], the authors investigate the blind acquisition character-

istics of Per-Survivor Processing (PSP). They show that short-term poor performance of

PSP is often from transmitted sequences that do not allow the channel to be determined.

D. GMSK RECEIVERS

GMSK signals may be demodulated coherently or non-coherently [38]. Huang, et

al. [39], provide an excellent overview of coherent and non-coherent receivers for GMSK.

They propose a fast Fourier transform (FFT) based architecture for phase, carrier, and sym-

bol timing recovery along with demodulation both coherently and non-coherently. They

perform simulations for receiver performance for various estimation errors in phase, fre-

quency, and symbol timing. In [40], the authors analyze decision feedback for one-bit

differential GMSK detectors. In [41], the authors analyze the performance of one-bit dif-

ferential detection of GMSK signals. In [42], the authors analyze the performance of two-bit

differential detection. In [43], the authors develop a simplified non-coherent detector that

uses a simplified phase pulse.

After Laurent [21] proposed representing a CPM signal as a linear combination

of amplitude modulated pulses, many authors investigated using this method to develop

receivers based on all or a fraction of the Laurent pulses. In [44], Kaleh uses the Laurent

representation of a CPM signal to develop the optimal receiver as a set of N complex

matched filters followed by a Viterbi detector. He then demonstrates that by using a

subset of the N complex matched filters a simplified Viterbi receiver can be developed that

approaches the performance of the optimum receiver. He then provides an example using

GMSK with BT = 0.25. In [45], the authors develop a four-state maximum-likelihood

sequence estimation (MLSE) GMSK demodulator. They achieve state reduction by only

using the first Laurent pulse and by using a whitening filter prior to the MLSE.

Many authors have looked at differential detection of GMSK using decision feed-

back [46, 47]. There are many proposed non-coherent detection methods for GMSK sig-

nals. In [48], the authors propose a non-coherent differential detection method based on

maximum-likelihood sequence estimation of the transmitted phase. In [49], the authors
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investigate the performance of decision feedback equalization and non-linear data-directed

estimation as alternatives to MLSE in the presence of adjacent channel interference.

In [47], the authors investigate GMSK differential detectors with decision feedback

for cochannel interference (CCI) channels. The authors show the superior performance of

a 2-bit differential detector compared to a 1-bit or 2-bit detector with one interferer and a

carrier-to-interferer power ratio of 11 dB.

E. MLSE

MLSE is commonly used as a detection method for signals where ISI is introduced

either at the transmitter or in the channel. The Viterbi Algorithm is an efficient method for

finding the shortest (or the longest) path through a layered graph or trellis. The algorithm

has been put to use as an effective method to compute the MLSE.

In [50], Sklar provides an excellent tutorial on using the Viterbi decoding algo-

rithm for channel equalization. He introduces the Viterbi decoding algorithm, discusses

computational complexity and applies it to channel equalization.

The Forney MLSE is introduced in [51]. This receiver structure is a matched filter

followed by a whitening filter to remove the statistical correlation of the noise from sample

to sample. The output of the whitening filter is then applied to a sequence estimator such

as the Viterbi decoder with branch metrics of Euclidean distance. The matched filter,

sampler and discrete-time whitening filter are often together referred to as the whitening

matched filter [8, 52]. In [53], a new upper bound is developed that is shown to be tighter

than the Forney bound developed in [51].

The Ungerboeck receiver, introduced in [54], does not require a whitening filter.

It consists of a matched filter and sampler, followed by a sequence estimator such as the

Viterbi decoder with a modified branch metric. The Ungerboeck receiver is developed from

the same ML principle as the Forney receiver and will have identical performance in the

same channel. The Ungerboeck receiver uses the symmetry of the autocorrelation function

of the channel in development of the branch metric. This modified branch metric negates

the requirement of the whitening filter in the development of the MLSD.

A unification of both the Forney and Ungerboeck receivers is presented in [55]. In

this work, each receiver is derived from the other providing further insight into each algo-
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rithm. The authors show that the whitening operation in the Forney receiver is canceled

by the Euclidean distance metric, leaving the modified metric of the Ungerboeck receiver.

F. COCHANNEL INTERFERENCE

There are many terms used in the literature that generically refer to cochannel

interference. The term multiple access interference (MAI) is commonly used to describe

interference from users within the same network or cell. CCI is often used to describe inter-

ference from a different network or different cell. In this dissertation cochannel interference

is used to describe both phenomena.

Shnidman [56], was the first to point out that cochannel interference and ISI are es-

sentially an identical phenomena. Both CCI and ISI lead to multiple symbol contributions

at the output of a filter matched to a single symbol period. Kaye [57], further investigated

the problem of multiple signal detection over multiple channels.

Single-antenna cochannel interference mitigation techniques can roughly be placed

into two different categories. The first category consists of filter based approaches including

subspace methods that involve filtering out the interference. These non-linear techniques

rely on the signal and interferer being somehow linearly separable. The second category

consists of multi-user detection techniques such as joint maximum likelihood sequence

estimation (JMLSE) and successive interference cancellation. These techniques jointly

estimate all of the signals; separation is achieved through the joint estimate. The authors

in [7, 58, 59] provide a good overview of these techniques.

1. CCI Filtering Methods

There has been much work in the area of reducing the complexity of the optimal

joint detector. The computational complexity of the optimal detector grows exponentially

in both ISI length and number of signals [2], making it practical only for a small number

of simultaneous users.

In [60–62], the authors develop an interference cancelling matched filter by using

known training sequences. In [63], the authors investigate the cancellation of unwanted

interfering signals based on second-order statistics. The constant-modulus algorithm and

the phased-locked loop are extended for use in blind multi-user detection in [64]. In [65], the

authors provide a performance comparison of coherent and limiter-discriminator GMSK
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detectors in the presence of a single interferer for various carrier-to-interferer ratios and

various bandwidth-time products.

Pukkila, et al. [66, 67], investigate SAIC for GSM where the authors assume the

interference is constant modulus, and they assume they do not have channel state infor-

mation. This technique is known as the Constant Modulus - Single-Antenna Interference

Cancellation (CM-SAIC) algorithm.

2. Joint Detection

Optimum joint detection techniques are often rejected because the complexity of

the computation is exponential in the number of users. For detection of only two or three

users the optimal techniques become viable. For narrowband signals, SNR limitations

would typically limit the joint detection of multiple users to no more than two or three

users.

In [68–70], the JMLSE is developed for continuous-phase modulated signals. This

involves representing the CPM signals using the Laurent representation [21], and following

the methods developed for linear modulation methods.

Polydoros and Chugg [71] discuss joint reception of narrowband signals based on

work in [2]. The authors investigate iterative-detection techniques and spend some effort

discussing complexity-performance tradeoffs.

In [72], the authors develop a lower bound for bit error probability for the JMLSE

with perfect channel knowledge.

Van Etten [59] describes a method of extending the Viterbi algorithm for ISI to

handle multiple cochannel signals. He termed this the “Vector Viterbi Algorithm”.

Verdú [73] uses the Ungerboeck formulation of the MLSE to form an optimal k-user

multi-user detector for asynchronous signals.

In [74], the authors describe a blind adaptive joint detector. The detector jointly

estimates both channel and transmitted data for each signal. The authors propose a Ts/2

sampler. Their detector is based on [75].

Giridhar, et al., [76] describe an optimal method for jointly demodulating cochan-

nel signals termed the joint maximum a posteriori sequence detector (JMAPSD). They

develop an optimal joint demodulator and investigate the performance of suboptimal re-

ceivers.
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In [77], the authors develop the optimum joint MLSE for GSM signals. To enable

coherent detection, the authors develop a method to jointly estimate channel parameters

based on a known training sequence.

In [78], the authors develop a model-based method for CPM demodulation in the

presence of cochannel interference. The authors use modern spectral estimation techniques

on a symbol-by-symbol basis in order to estimate instantaneous frequency. They provide

an excellent summary of standard CPM demodulation techniques.

3. Suboptimal Joint Detection

In [79], a receiver structure consisting of a bank of matched filters followed by a

whitening filter and a vector Viterbi algorithm is proposed. In [80], the authors propose

an orthogonal multi-user receiver. The proposed receiver does not require knowledge of

signal amplitude or noise power. Ranta, et al., [81] propose a method of exploiting the

independently fading multipath channels to provide separation of transmit waveforms to

be used in joint demodulation.

4. Development of the JMLSE

Below is an introduction to JMLSE. It is well known that the output of a single

matched filter generates a sufficient statistic for detection of a signal in Gaussian noise [8].

Consider the detection of multiple synchronous signals in noise with a single receiver. The

received signal r(t) is the summation of these multiple signals plus noise:

r(t) =
Ns∑
k=1

sk(t) + n(t). (2.9)

A simple strategy for detecting the multiple signals is to form a bank of matched filters

each followed by a decision threshold. If the signals are orthogonal and the symbols equally

likely, this structure could be shown to minimize the probability of error. If the signals are

not orthogonal, this method will not minimize probability of error. For signals that are

highly correlated or slightly correlated with large differences in received power, this method

will perform very poorly. The outputs (y1, y2, . . . , yNs) of Ns matched filters matched to

each of the signals are sufficient statistics for estimating the symbols (α1, α2, . . . , αNs), but

y1 is not a sufficient statistic for estimating α1 [2]. This is because, in general, the signals

sk, are not mutually orthogonal, so in general the decision statistics yk are not independent,

even when n(t) is AWGN. It is for this reason that joint detection is required. W. van
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Etten [82] demonstrates that the joint detection problem is an extension of the ISI problem.

He was the first to show that the outputs of multiple matched filters matched to each of the

cochannel signals form sufficient statistics for joint estimation of the transmitted signals.

For asynchronous signals, the matched filter outputs at a particular sample time

are not sufficient statistics for determining the symbols transmitted at that same instance;

the matched filter outputs from the entire duration of the signal (y1,y2, . . . ,yNs) must be

used in the estimation of the symbol vectors (α1,α2, . . . ,αNs) [2].

5. General Ns Signal Case

Below we the joint MLSD is developed for the Ns-user case using a complex base-

band representation and a modified metric introduced by Ungerboeck in [54] for an ISI

channel. The development closely follows the work by Verdú [2, 53, 73], Murphy [68] and

examples in [8].

Consider the reception of Ns signals in AWGN

r(t) =
Ns∑
k=1

sk(t) + z(t). (2.10)

Where z(t) is AWGN and sk(t) is represented as

sk(t) =
∑

i

Akαk[i]ψk(t− iTs − τk), (2.11)

where the unit-energy signal pulse, ψk(t), is only nonzero on the interval [0, Ts], τk is the

time offset, and Ak is the amplitude for the kth signal.

Form a set of matched filters whose outputs at the sample time are

yk[i] =

∫ ∞

−∞
r(t)ψk(t− iTs − τk) dt, (2.12)

where ψk are the unit-energy signal pulses from (2.11). The matched filter outputs,

(y0,y1, . . . ,yNs−1), are a linear combination of all the signals’ individual responses to

the filter: the desired response plus the response of 2 × (Ns − 1) other symbols from the

other channels. For pulses with a duration of one symbol period, the matched filter outputs

will consist of contributions from the symbol just before and the symbol just after from

each other channel. This is shown in Figure 2.1. The output of the matched filters can be
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written as

yk[i] = Akαk[i]

+
∑
j<k

Ajαj[i]

∫ Ts

0

ψk(t)ψj(t− (τj − τk)) dt

+
∑
j<k

Ajαj[i+ 1]

∫ Ts

0

ψk(t)ψj(t− Ts − (τj − τk)) dt

+
∑
j>k

Ajαj[i− 1]

∫ Ts

0

ψk(t)ψj(t+ Ts − (τj − τk)) dt

+
∑
j>k

Ajαj[i]

∫ Ts

0

ψk(t)ψj(t− (τj − τk)) dt

+ zk[i],

(2.13)

where zk[i] is a complex Gaussian random variable with variance σ2 = N0. The Gaussian

random process formed by interleaving the noise components from the output of each

matched filter is given by z[i] =
[
z1[i] z2[i] . . . zNs [i]

]T
and has autocorrelation matrices

E{z[i]zT [j]} =



σ2RT [1], ifj = i+ 1

σ2RT [0], ifj = i

σ2R[1], ifj = i− 1

0 otherwise

(2.14)

where R[i− j] is defined as the matrix with elements n,m given by

Rn,m[i− j] =

∫ ∞

−∞
ψk(n− iTs − τn)ψ∗m(t− jTs − τm) dt. (2.15)

It is convenient to group the ith terms in (2.13) to obtain a vector form of the

equation

y[i] = RT [1]Aα[i+ 1] + R[0]Amα[i] + R[1]Amα[i− 1] + n[i], (2.16)

where Am is a diagonal matrix containing the signal amplitudes, Am = diag{A1, . . . , Ak}.
R[0] is the cross-correlation matrix between the jth and kth signal for the current symbol,

and Rjk[0] =
∫ Ts

0
ψk(t)ψj(t− (τj − τk)) dt. The matrix R[1] contains the cross-correlations
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Figure 2.1: Three Asynchronous Cochannel Signals

between the jth signal at the current symbol and the kth signal at the next symbol for

j < k

Rjk[1] =

0, ifj ≥ k

αj[i− 1]
∫ Ts

0
ψk(t)ψj(t+ Ts − (τj − τk)) dt ifj < k

. (2.17)

For equally likely symbols in AWGN the MAP receiver is equivalent to the ML

receiver that selects the symbol matrix Â such that the following equation is satisfied

Â = arg min
A

∫ ∞

−∞
|r(t)−

∑
k

sk(t,αk)|2 dt, (2.18)

where the symbol matrix A is a (Ns × N) matrix with elements αk[i] ∈ {−1, 1}. Equa-

tion (2.18) can be expanded and the terms that do not depend on αk dropped, to show

this is the equivalent to maximizing

Ω(A) = 2

∫ ∞

−∞
r(t)

∑
k

sk(t,αk) dt−
∫ ∞

−∞

∣∣∣∣∣∑
k

sk(t,αk)

∣∣∣∣∣
2

dt

= 2

∫ ∞

−∞
r(t)

∑
k

sk(t,αk) dt−
∫ ∞

−∞

∑
k′

∑
k

sk(t,αk)s∗k′(t,αk′) dt

= 2

∫ ∞

−∞
r(t)

∑
k

sk(t,αk) dt− 2

∫ ∞

−∞

∑
k′

k′−1∑
k=1

<(sk(t,αk)s∗k′(t,αk′)) dt

−
∫ ∞

−∞

∑
k

|sk(t,αk)|2 dt

. (2.19)

Where the last step follows from using the conjugate symmetry of the autocorrelation

matrix to write the double summation as twice the real part of the sum of the lower
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triangular plus the diagonal terms. Equation (2.11) can be used to expand the first term

of (2.19) and (2.12) to write this in terms of the matched filter outputs

2

∫ ∞

−∞
r(t)

∑
k

sk(t,αk) dt = 2

∫ ∞

−∞
r(t)

∑
k

∑
i

Akαk[i]ψk(t− iTs − τk) dt

= 2
∑

k

∑
i

Akαk[i]yk[i]
. (2.20)

The second term can be expanded using (2.11) to get∫ ∞

−∞

∑
k′

∑
k

sk(t,αk)s∗k′(t,αk′) dt

=

∫ ∞

−∞

∑
k

∑
k′

∑
i

Akαk[i]ψk(t− iTs − τk)
∑

j

Ak′αk′ [j]ψ
∗
k′(t− jTs − τk) dt

=
∑

k

∑
k′

∑
i

∑
j

Akαk[i]Ak′αk′ [j]Rk,k′ [i− j]

. (2.21)

Where the matrix R[i− j] is defined as in Equation 2.15. Equation (2.20) and (2.21) can

be combined to obtain:

Ω(A) = 2
∑

k

∑
i

Akαk[i]yk[i]−
∑

k

∑
k′

∑
i

∑
j

Akαk[i]Ak′αk′ [j]Rk,k′ [i− j] (2.22)

The above can be written in vector format as

Ω(A) = 2
∑

i

αT [i]Amy[i]−
∑

i

∑
j

αT [i]AmR[i− j]Amα[j]. (2.23)

The symbol matrix A is a (Ns × N) matrix with column vectors αk. Maximizing

Ω(A) is a combinatorial problem; find Â by trying all 2NsN permutations of A. Using this

method computation is exponential in both message length N and number of users, Ns,

making it an unattractive solution.

The key to reducing the complexity of the solution is to recognize that R[i − j] is

nonzero only for |i− j| ≤ 1 due to the finite support of ψk. This allows us to write

Â = arg max
A

∑
i

<(λi) (2.24)
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where <(·) indicates the real part and λi is given by

λi = 2αT [i]Amy[i]−αT [i]AmR[0]Amα[i]− 2αT [i]AmR[1]Amα[i− 1] (2.25)

The last term has a factor of two from the symmetry of Rjk[1] = Rkj[−1]. The α[i]α[i+ 1]

from the previous term is absorbed into the α[i]α[i− 1] from the current term.

Writing the maximization problem in the form of (2.24), where λi depends only

on α[i] and α[i − 1], allows us to remove the exponential dependence on N . This max-

imization may be found using the Viterbi algorithm with 22Ns−1 states and N stages. If

we were to form a vector y′ =
[
y1[0] y2[0] . . . yNs [0] y1[1] . . . yNs[N ]

]T
as we did in

the previous section we could perform this maximization using the Viterbi algorithm with

2Ns−1 states and Ns ×N stages.

G. MAP ALGORITHM

There are two common varieties of the MAP algorithm. Bahl, Cocke, Jelinek and

Raviv (BCJR) [83] is a forward-backward recursion to calculate the a posteriori probabil-

ities of the state transitions of a Markov source observed through a discrete memoryless

channel. The BCJR algorithm is detailed in Appendix B. Abend and Fritchman developed

an alternative algorithm [75] that does not require a backwards pass, making it suitable

for data that is not in finite blocks or for large blocks with a time-varying channel [84].

Li, et al. [84] provides a thorough discussion of the two types of MAP algorithms. In

addition, many authors have investigated efficient hardware implementations of the BCJR

algorithm [85].

1. Reduced Search Techniques

The MAP algorithm has complexity that is exponential in the number of users and

the ISI channel length. There has been some work on reduced search techniques to lower

the computational complexity of the BCJR algorithm [13, 14, 86]. These techniques all

involve ignoring working probabilities that fall below a selected threshold. The methods

can be roughly placed into two categories. The “M-BCJR” algorithm selects the M largest

components at each stage during each pass (forward or backward) through the trellis. The

“T-BCJR” algorithm ignores components at each stage that are below some threshold T .

These techniques are geared toward their use in Turbo decoding where the BCJR algorithm
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is used over multiple iterations. The major reduction in computational complexity is for

later iterations.

Vithanage, et al., [87] develop a reduced complexity BCJR type algorithm based on

propagation of expectation . The reduction in complexity is similar to that of the M-BCJR

algorithm proposed in [13, 14], by selecting a discrete distribution with limited support.

They term this algorithm EP-MBCJR.

H. CHAPTER SUMMARY

This chapter provides required background and a survey of previous work in the area

of cochannel interference mitigation and multi-user detection. The next chapter describes

the AIS signal in detail and provide some analysis of the low-entropy property of this

signal.
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III. AUTOMATIC IDENTIFICATION SYSTEM

(AIS)

A scenario subject to potential cochannel interference is the reception of the ship-

based AIS signal on a high-altitude platform such as an UAV or a satellite. There has

been some interest in collection of the AIS signal from both high altitude UAVs and

from satellites for maritime traffic monitoring [10, 16]. The AIS signal is particularly

interesting for this dissertation due to its low-entropy property; the transmitted fields of

the signal contain similar information from transmission-to-transmission. This property

will be exploited to aid in joint detection; leading to improved FER performance.

A. AIS OVERVIEW

AIS is a ship- and land-based tracking and communications system operating in the

VHF maritime band. The primary function of AIS is to provide information for surveil-

lance and the safe navigation of ships [1, 4]. The AIS sends ship-based tracking messages

indicating position and state information at intervals typically between ten and two sec-

onds. The International Maritime Organization (IMO) has ruled that all passenger ships,

cargo ships greater than 500 gross tons, and all ships greater than 300 gross tons on an

international voyage must carry an AIS transceiver by July 2008 [88].

An example of the end use of an AIS transceiver is shown in Figure 3.1. Figure 3.1a

shows an illustration of the output of a ship-board AIS display to aid in safe navigation.

Figure 3.1b illustrates an aerial view of the same scene. The display provides the captain

of a ship with a real-time picture of the local ship traffic around the vessel. The displays

can be integrated with radar data to provide a integrated picture of local sea traffic.

Each AIS transmits position reports at a rate based on the current state of the ship.

For example, a ship underway and changing course is required to report more often than

a ship that is moored. Nominal reporting intervals for Class A and Class B equipment are

given in Table 3.1 and Table 3.2 [1]. Class A Equipment is the mandatory equipment for

ships required by the IMO to carry AIS equipment. Class B equipment is for ships not

required by the IMO to carry equipment.
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(a) AIS Display (b) Aerial View

Figure 3.1: AIS Display Example

Table 3.1: Class A Ship Reporting Interval

Class A Ships Information / Condition Reporting Interval

Static Information 360 sec
Voyage Related Information 360 sec
Safety Message as required
Ship at Anchor moving less than 3 knots 180 sec
Ship < 14 knots not changing course 10 sec
Ship 14− 23 knots 6 sec
Ship > 14 knots changing course 2 sec
Ship > 23 knots 2 sec

Table 3.2: Class B Ship Reporting Interval

Class B Ships Information / Condition Reporting Interval

Ship moving less than 2 knots 180 sec
Ship 2− 14 knots 30 sec
Ship 14− 23 knots 15 sec
Ship > 23 knots 5 sec
Search and Rescue (airborne) 10 sec
Aids to Navigation 180 sec
AIS base station 10 sec
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Table 3.3: AIS Transmitter Parameters

Transmit Parameter Low Setting High Setting

Power (W) 2 ± 20% 12.5 ± 20%
Time-bandwidth product BTs 0.3 0.4
Modulation index h 0.25 0.5
Bit rate 9600 ± 50 ppm 9600 ± 50 ppm
AIS 1 Frequency 161.975 ± 3 ppm 161.975 ± 3 ppm
AIS 2 Frequency 162.025 ± 3 ppm 162.025 ± 3 ppm

1. AIS Transmitter Characteristics

An AIS transmitter on the open seas will transmit a GMSK signal with a modulation

index h = 0.5 and transmit power of 12.5 Watts. In terrestrial waters these settings may

be changed by the appropriate authority [1]. Table 3.3 lists the various AIS transmitter

configurable parameters [1]. On the open seas the “high” settings are used. In terrestrial

waters an authority can instruct the transceiver to change any or all of the parameters to

the “low” setting. The transceiver will default to alternate transmissions between the two

AIS channels, AIS 1 and AIS 2.

2. AIS Multiple Access Method

The AIS is a multi-user system. The system allocates 2250 transmission time slots

per minute on two separate frequencies allowing for a total of 4500 transmissions per

minute. The AIS operating in continuous and autonomous mode uses SOTDMA to sepa-

rate users. Each user within line-of-sight (nominally 55 km radius) will monitor AIS traffic

for a full frame (1 minute) to create a list of candidate time slots for transmission. The

user will then select randomly among these candidate time slots for transmission during

the next frame. The same time slot will be used for up to seven subsequent transmissions.

Each user effectively creates his own cell centered around his ship.

A minimal cochannel interference problem exists for users on the surface of the

Earth; in general, users of the same time slot are not within line-of-sight. The time slot

selection algorithm is designed such that the probability of two ships selecting the same time

slot is low. A potential interference issue arises when receiving the signals on a platform

that has a field-of-view larger than the nominal 110 km as illustrated in Figure 3.2. The

three circles in the figure represent areas where the SOTDMA algorithm has separated the

33



Figure 3.2: Example of Reception from Multiple Cells

signals via separate time slots. Within each region there is no contention; there is no more

than one transmission per time slot per channel. At a remote receiver, like the satellite

depicted in Figure 3.2, there is the possibility that some of the time slots will be occupied

by multiple users leading to cochannel interference at the receiver.

The AIS does not directly address the hidden node problem. As an example of the

hidden node problem, consider three ships Ship A, Ship B and Ship C all on a line and,

separated by half the nominal cell size, Figure 3.3. Ship B can see both Ship A and Ship C

but Ship A and Ship C can not see each other. If Ship A and Ship C choose the same

time slot, then each will interfere with Ship B. This case does not cause a problem in

practice. If the distance between ships is large, as is the required condition for the above

interference, the importance of receiving the message is low.

The AIS specifies 2250 time slots each minute for each channel. Each slot is 26.67

ms (256 bits) long. The structure of the AIS message format is shown in Figure 3.4. This

message structure is based on the High-level Data Link Control (HDLC) protocol specified

in [89]. The “ramp up” period allows for the transmitter to get up to full power. The 24 bit

training sequence is a sequence of alternating ones and zeros used for synchronization at

the receiver. The start flag and the end flag are the HDLC flags indicating the start and

end respectively of the 168-bit data packet. The frame check sequence (FCS) is a 16 bit
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A B C

Figure 3.3: Hidden Node Example

Ramp up Training sequence Start flag data FCS End flag Buffer
8 bits 24 bits 8 bits 168 + stuff bits 16 bits 8 bits 24 bits︸ ︷︷ ︸

26.67ms

Figure 3.4: AIS Packet

cyclic redundancy check (CRC) on the data portion of the message to increase confidence

that a message is received without error. The CRC uses the polynomial specified in [89]

with bits preset to one. The buffer allows for timing offsets from bit-stuffing, propagation

delay, repeater delay, and synchronization jitter.

Table 3.4 is a paraphrased description from the International Telecommunication

Union (ITU) recommendation [1] of the contents of the data portion of the AIS packet

described in Figure 3.4. There are many varieties of AIS messages. Table 3.4 illustrates

some of the more common messages. Careful inspection of Table 3.4 reveals that many of

the fields are either constant or predictable. The ability to predict field values is the key

feature exploited in this work; this is explained in more detail in Section III.D.

B. EXAMPLE AIS LINK BUDGET AT LEO

It is useful to calculate the anticipated SNR at the receiver for an example collection.

If the reception is severely noise-limited for single-channel reception, little will be gained

from investigating methods to mitigate cochannel interference. An example AIS link budget

calculation for a collector with a path length of 800 km is shown in Table 3.5. This

calculation does not take into account factors such as multipath and considers a rather
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Table 3.4: Type 1, 2 or 3 AIS data message break out after [1]

Parameter Number
of bits

Description

Message ID 6 1, 2, or 3 for this message
Repeat Indicator 2 Indicates number of times message has

been repeated
User ID 30 MMSIa number
Navigation Status 4 0 under way, 1 at anchor, 2 not under

command ...
Rate of Turn 8 ∈ [−127, 127], -128 indicates not avail-

able
SOG 10 Speed over ground ∈ [0, 1022] 1023 not

available
Position accuracy 1 1 = high ( < 10 m )
Longitude 28 0x6791AC0 indicates not available
Latitude 27 0x2412140 indicates not available
COG 12 Course over ground, tenths of a degree

∈ [0, 3600], 0xE10 indicates not avail-
able

True heading 9 Degrees ∈ [0, 359], 511 indicates not
available

Time stamp 6 UTCb seconds ∈ [0, 59], codes ∈ [60, 63]
Reserved 4 Reserved
Spare 1 should be set to 0
RAIM-flag 1 RAIM (Receiver autonomous integrity

monitoring), 1= RAIM in use
Communications state 19 Specifies slot position and other TDMA

parameters
Total 168

aMaritime Mobile Service Identity (MMSI)
buniversal time (UTC)

simple gain for the transmit and receive antennas. The path loss is calculated as

Path Loss =

(
4πR

λ

)2

(3.1)
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where R is the range and λ is the carrier wavelength given by 3 × 108(m/s)/162(MHz).

The received power is given by

Received Power = PtGtGr/Path Loss (3.2)

where Pt is the transmitted power and Gt and Gr are the transmit and receive antenna

gains respectively. The energy per bit (Eb) is given by the Received Power×Ts where Ts is

the bit period. The one sided noise density N0 is given by N0 = kT where k is Boltzman’s

constant and T is the noise temperature.

Table 3.5 demonstrates that for nominal reception from a high altitude receiver,

the signal is not noise-limited, therefore there may be opportunities for joint reception

techniques.
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Table 3.5: Example AIS Link Budget

Parameter Val dB

Path Length R 800.00 (km)
Transmit Frequency f 162.00 (MHz)
Path Loss Ls 134.69 (dB)

Path Loss Ls 134.69 (dB)
Power Transmitted Pt 12.50 (W) 10.97 (dBW)
Transmit Antenna Gain Gt 1.00 0.00 (dB)
Receive Antenna Gain Gr 1.00 0.00 (dB)
Received Power Pr 4.24−13 (W) -123.72 (dBW)

Received Power Pr 4.24−13 (W) -123.72 (dBW)
Bit Period Tb 0.10 (mSec) -39.82 (dB-sec)
Energy per Bit Eb 4.42−17 (J) -163.55 (dBJ)

Representative Noise Temperature T 2910.00 Kelvin 34.64 (dBK)
Boltzman Constant k 1.38−23 JK−1 -228.60 (dBJK−1)
Two Sided Noise Density N0 -193.96 (dBJ)

Energy per Bit Eb -163.55 (dBJ)
Two Sided Noise Density N0 -193.96 (dBJ)
Energy per Bit / Noise Density Eb/N0 1100.22 30.41 (dB)

Received Power Pr 4.24−13 (W) -123.72 (dBW)
Noise Density N0 -193.96 (dBJ)
Bandwidth B 25.00 (kHz) 43.98 (dB)
Signal to Noise Ratio SNR 422.48 26.26 (dB)
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C. SINGLE-CHANNEL DEMODULATION

Before delving too far into demodulation of cochannel signals, it is instructive to

consider a simple case of non-coherently demodulating an AIS packet in the presence of

AWGN. This example, although not optimal in any sense, illustrates the characteristics of

the signal. The test signal has the following characteristics:

• data rate of 9600 baud

• center frequency of ≈ 160 MHz (AIS1 161.975 MHz, AIS2 162.025 MHz)

• GMSK modulated with BTs = 0.4, h = .5

• Frames on UTC minute boundary with 2250 time slots

• Each slot 26.6 ms

• Before modulation, the data are encoded non-return-to-zero inverted (NRZI) (level

changes when a ‘0’ is sent, level stays the same when a ‘1’ is sent)1.

• The data field and FCS are bit-stuffed (when a string of five consecutive 1’s is

encountered a ‘0’ is inserted).

• A 24 bit training sequence of alternating 0’s and 1’s. It is not specified if the pattern

starts with 0’s or 1’s since the data will be NRZI encoded.

• The data contains the HDLC start and stop flags 0x7E, where the 0x notation

indicates a hexadecimal value.

Assume the signal has been received through a band-pass filter and mixed down

in quadrature so the signal is analytic and centered at some intermediate frequency (IF).

The IF is then sampled at some rate greater than twice the signal bandwidth. The first

step in demodulation is to identify the start of the packet in time. An energy detection

routine can be used to do this. Figure 3.5 is a time frequency plot of a single AIS packet

in noise located by using an energy detection method.

1The definition of NRZI is found in many sources defined as a level change when a ‘1’ is sent and no
change on a ‘0’. The definition above for the AIS is from the ITU recommendation [1].
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Figure 3.5: Single AIS Signal in AWGN

The next step is to pass the signal through a band-pass filter, removing out-of-band

noise, and then shift the result down to baseband. Let the received analytic sequence be

represented by

r[n] = s[n] + z[n]. (3.3)

The result from filtering and mixing down to baseband is

y[n] = (r[n] ∗ h[n]) e−jωcn, (3.4)

where ωc is the approximate intermediate frequency and h[n] is the impulse response of

the filter. The differential phase term, ∆φ, is given by

∆φ[n] = φ[n]− φ[n− 1], (3.5)

where

φ[n] = tan−1

[
=(y[n])

<(y[n])

]
, (3.6)

and tan−1(·) is the four-quadrant arctan function. Figure 3.6 shows ∆φ[n] for an example

received AIS signal. The training sequence of alternating ones and zeros can clearly be

seen. Notice that the alternating ones and zeros show up as alternating pairs of ones and

pairs of zeros from the NRZI encoding. For example the sequence “010101010101” will be
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Figure 3.6: Differential Phase

either “001100110011” or “110011001100” after NRZI encoding, depending on the initial

state of the encoder.

The AIS signal has a training sequence of alternating 1’s and 0’s followed by the

HDLC start flag of 0x7E. The combination of these sequences can be used to locate the

start of the packet and to derive bit timing.

A data sequence is then generated by decimating ∆φ[n] with an offset and making

hard decisions.

anrzi[n] = u(∆φ[Dn+ k]−∆φ) (3.7)

where D is the down-sampling factor, k is an integer offset, ∆φ is the mean of ∆φ, and

u(·) is the unit step function.

u(ζ) =

1 ζ ≥ 0

0 ζ < 0
(3.8)

Note that Equation 3.7 assumes down-sampling by an integer. If the end goal is to recover

symbols at some rate Rs, the sample rate should be fixed at Fs = lRs for some positive
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integer l. If this were not the case two options exist: re-sample the original data such that

F ′
s = lRs or select the sample which is closest to the ideal sample time.

Since the data anrzi[n] is encoded NRZI it must be converted to non-return-to-

zero (NRZ) defined by:

as[n] = anrzi[n]⊕ anrzi[n− 1], (3.9)

where ⊕ denotes the logical XNOR operation. Before the data are transmitted it is bit-

stuffed. The bit-stuffing operation inserts a zero after a consecutive string of k ones. This

has a benefit of aiding timing recovery and removing the ambiguity with detection of

control flags. The data recovery operation is written as an operator B−1
5 , for example

a = B−1
5 (as). (3.10)

Where as is the bit-stuffed vector, a is the recovered original data vector prior to bit-

stuffing. The operator B−1
5 indicates the unstuffing operation when k = 5, as is the case

for AIS.

Data are sent byte-wise with the least significant bit first. The data are then in

a format ready to be parsed to recover the internal data fields. A full description of all

packet formats is given in [1].

D. PREDICTION OF AIS PARAMETERS

Suppose f is a discrete random variable representing a number coded with k bits.

If the probability mass function (PMF) of f is known to the receiver, the receiver may use

this information in deciding which of the possible values, {0, 1, . . . , 2k−1}, of f were sent.

When the PMF is not uniform on [0, 2k−1] there will be some gain in performance by using

MAP detection vs. ML detection. The details of the gain in performance are provided in

Chapter VI and Chapter VII. The predictability of various discrete random variables in

AIS data fields are discussed below.

1. Prediction of an AIS Packet Time-of-Arrival

Time-of-arrival prediction is broken into two estimates. The first is an estimate of

which time slot a particular AIS transceiver will transmit on. This estimate is based on the

SOTDMA time slot selection algorithm. The second is an estimate of the offset from the
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Figure 3.7: Histogram of Time-of-Arrival Variation for Several AIS Transceivers

nominal start of that time slot. This estimate is based on the nominal path length to the

receiver and an estimation of the stability of the transmissions from the AIS transceivers.

A particular AIS transmitter will reserve a fixed number of time slots in a SOTDMA

frame depending on the desired transmit rate. Typically between 6 and 30 time slots per

frame will be reserved, corresponding to update rates of ten and two seconds respectively.

It is important to predict with some degree of accuracy on which time slot a particular

user will transmit. This is particularly important for identifying the start of a packet in a

cochannel reception.

The same time slot will be used for up to seven frames before the next assignment.

The number of frames for which a time slot is reused is determined by the SOTDMA

algorithm. Chapter IV describes the time slot assignment algorithm in great detail.

The specification in the ITU recommendation [1] allows for ±3 symbols of jitter for

the packet start time relative to the nominal start time. Experimental results have shown

that under typical conditions this jitter interval is on the order of 3-100 µs; this corresponds

to 3-25% of a symbol period. Figure 3.7 shows the distribution of time-of-arrival offsets

for several transceivers.
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2. Prediction of AIS Packet Data

We may ask, “How much information is transmitted by an AIS message?” To

answer this question the information source is modeled as a stochastic random process.

The entropy of an error term can then be calculated, where the error term is the difference

between the measured value and the value modeled by a random process. Most of the

fields within the data portion of an AIS message are very predictable. It is instructive to

analyze each field of one of the message types and present results for each.

Analysis of data received by the United States Coast Guard (USCG) shows that

type 1, 2 and 3 messages make up approximately 98% of AIS message traffic. Analysis

was performed by obtaining 24 hours of coastal data from the USCG-provided application

AISUser and counting the number of each message type. With this in mind the analysis in

this work is restricted to these message types; other message types are treated as unknown

interferers.

Four types of predictors are used depending on the field. The latitude and longitude

fields are predicted with a Kalman filter. The communications state field uses a special

predictor based on the protocol for SOTDMA. The time field uses an external time source

as a predictor. All of the other fields use a first order predictor. A full description of each

predictor along with the parameters used for each field is provided in Chapter IV.

Some of the fields vary depending on the particular AIS transceiver used, and this

warrants additional explanation. For example, the latitude and longitude fields are 27 and

28 bit respectively with the least significant bit corresponding to 1/10,000 minute. Some

AIS report to 1/1,000 minute or even 1/100 minute, however this is taken into account by

the predictor developed in the next chapter.

Each field is modeled as a stochastic process f(t). For each field past measurements

at time t− τk are used to estimate the current value at time t.

f̂(t) = g(f(t− τ1), f(t− τ2), . . . , f(t− τN), τ1, τ2, . . . , τN) (3.11)

The random process f(t) is discrete; the possible values of f(t) are drawn from a finite set.

In order to measure the entropy of the probability distribution of the error in the

prediction of f̂(t), the function e(t) is defined as the difference between the estimated value

and the actual value.
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e(t) = f̂(t)− f(t) (3.12)

Entropy is a natural measure of uncertainty in the random process. The entropy

of the random process f(t) could be considered, but it is clearly non-stationary. Although

e(t) lacks true stationarity, f(t) could not even be approximated as a stationary process.

The entropy (in bits) of a discrete random variable p with probability mass function

(p1, p2, . . . , pK) is given by:

H(p) =
K∑

k=1

pk log2(1/pk), (3.13)

where we define 0 log2(1/0) = 0.

To find the entropy of e(t) the PMF of e(t) is required. The PMF is estimated

using a normalized histogram, implicitly assuming that the process e(t) is ergodic. With

the PMF of e(t), Equation (3.13) can be used to calculate the entropy (information content)

of the field.

Figure 3.8 shows the number of bits in each field of an AIS type 1, 2, or 3 message,

along with the calculated entropy of the residual error process e(t). The message data used

to create this graph is from the USCG collection platforms along the US coastline.

E. CHAPTER SUMMARY

This chapter introduces the AIS signal as a good candidate for low-entropy cochan-

nel mitigation techniques. The characteristics of the transmitter are introduced and mul-

tiple access scheme SOTDMA is discussed. The case for cochannel interference as seen by

a remote observer is presented. Much detail is provided on the format of the transmitted

messages and the data contained within each message. Finally measured results for the

estimated entropy of the transmitted data is presented, illustrating the AIS signal is low-

entropy. The next chapter discusses the specific methods used for prediction of the AIS

messages for this research.

45



0

5

10

15

20

25

30

35

0

50

100

150

200

M
es

sa
ge

ID

R
ep

ea
t

In
di

ca
to

r

N
av

ig
at

io
n

St
at

us

R
at

e
of

T
ur

n

Sp
ee

d
O

ve
r

G
ro

un
d

P
os

it
io

n
A

cc
ur

ac
y

L
on

gi
tu

de

L
at

it
ud

e

C
ou

rs
e

O
ve

r
G

ro
un

d

T
ru

e
H

ea
di

ng

T
im

e
St

am
p

R
es

er
ve

d/
Sp

ar
e/

R
A

IM

C
om

m
un

ic
at

io
ns

St
at

e

T
ot

al

bits
information bits

Figure 3.8: Comparison of Transmitted Bits and Entropy of Residual Error on Field by
Field Basis

46



IV. PREDICTION

This dissertation develops an algorithm for joint detection of two or more signals

exploiting a priori knowledge of the data source for one or more of the signals. The

fundamental assumption is that we are able to predict in some way future values of the

desired signals, and use these predicted values to aid in demodulation. A distribution is

desired for all possible values of a signal based on past (prediction), and perhaps both past

and future (smoothing) measurements. This chapter introduces some methods of prediction

and applies them to the AIS signal. Results are then presented for the application of these

methods to a 24 hour collection of the AIS signals on a selected set of ships.

Before discussing prediction, it is necessary to describe some of the characteristics

of the values that are to be predicted. These values are reported as discrete values. For

some values, such as position, the underlying value is continuous, but the data itself is a

quantized version of that continuous value. For other fields, such as the AIS field msg id,

the underlying value as well as the measurement are discrete. Different predictors are used

for each of these underlying models.

For each field, the process noise describes the deviation of the value predicted by

the model from the actual value. The measurement noise describes the error in measuring

the actual value. The auto- and cross-correlation functions of the model (process) noise or

the measurement noise are not known; they are estimated.

A third and very important point is that the error term is not the difference between

the true state and the estimate. The error term is the difference between the estimate and

the reported, or quantized state. This is because the estimate is used to help decide what

was transmitted, and it is the quantized values that are transmitted. It is also interesting

to note that if the underlying noise in the system is significantly less than the quantization

error, then the error in the estimate can not accurately be modeled as a stationary random

process. Depending on how the true distribution aligns with the quantization levels, the

PMF of the quantized value could be quite different from that of the true distribution. To

see this, consider a quantized random walk. When the underlying true value is close to

a quantization level, the output will likely be constant. When the true value is exactly

between quantization levels, the output will alternate between the two levels.

Prediction is a tool used in this work, but not the focus of the work. The devel-

opment below is intended to introduce the concepts to support their later use as tools.
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The objective of this chapter is not to develop the “best” predictor. The objective is to

demonstrate that the prediction assumed in the rest of the dissertation is possible, and to

quantify the performance of the predictor.

A. FIRST ORDER PREDICTOR

The least complicated of the predictors considered is the first order predictor. The

first order predictor estimates the value at time n+ l as a factor times the value at time n

[90]:

f [n+ l] = a0f [n] (4.1)

For many applications, the first order predictor with a0 = 1 may be the most appropriate

predictor. Consider a remote outdoor temperature sensor with a resolution of 1/2 degree

Celsius reporting once per second. A practical predictor may suggest future values are

identical to current values. The first order predictor is appropriate when the process is

modeled as discrete Markov, and the probability of transition out of the current state is

less than the probability of remaining in the current state. This occurs when the diagonal

elements of the transition matrix are greater than any other element in a particular row,

Ai,i > Ai,j ∀j 6= i. The AIS Navigation Status field is an example of a process that

can be accurately modeled as a discrete Markov process with this property. The primary

advantage of the first order predictor, and the reason it is used here, is simplicity.

Most of the fields in the type 1, 2, or 3 AIS messages are modeled as discrete

Markov chains with the property described above. For the type 1, 2 or 3 AIS packets a

first order predictor is used for the following fields: Repeat Indicator, User ID, Navigation

Status, Rate of Turn, Speed Over Ground, Position Accuracy, Course over Ground, and
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True Heading. The residual entropy of the error from a first order predictor for these AIS

type 1, 2 and 3 fields are given in Figure 3.8 for an example 24 hour data set.

B. SECOND ORDER PREDICTOR

The second order predictor is another very simple predictor. It predicts the next

value based on the current value and a previous value using linear interpolation [90].

f [n+ l] = f [n] + l
f [n]− f [n− k]

k
=

1∑
i=0

aif [n− i] (4.2)

The second order predictor is also very simple to implement. The real problem with the

second order predictor is that noise on the measurement can be magnified by the l/k factor.

Because of this limitation, the second order predictor is not used for any of the AIS fields.

A better predictor is one that somehow weights new measurements based on some

knowledge of how much noise is in the system. Predictors based on the Kalman filter have

this characteristic. The Kalman filter is introduced in the following section.

C. KALMAN FILTER

The Kalman Filter is a recursive filter that provides an optimum, MMSE estimate

of an unobserved state, provided that the system can be modeled as a Markov chain with

linear operators relating the next state to the current state, perturbed by white noise [91].

In this work, the Kalman filter is used as a predictor to estimate AIS fields that nominally

change at a constant rate, such as latitude and longitude. The Kalman filter is described

below using an example from [91] and [92].

Consider predicting the one-dimensional position of a train on a straight track. The

unobserved state consists of position and velocity. The system is modeled as ideal; having

no external forces leads to a state transition equation of

xk+1 = Φkxk + wk, (4.3)

where Φk is a 2× 2 state transition matrix, k is the time index, and x is the column state

vector with first and second elements of position and velocity, respectively. The process
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noise vector, wk, is a zero-mean multivariate Gaussian random variable with covariance

matrix Qk = E{wkw
T
k }. The vector wk is uncorrelated in time, E{wkw

T
i } = 0, ∀i 6= k.

The noise vector wk represents the deviation from the ideal model due to unmodeled forces.

For the train example the deviation from the model could be caused by a slight incline or

uneveness of the track, the conductor accelerating, etc. All of these effects are modeled

with the noise term wk.

For this example, the transition matrix is:

Φk =

[
1 ∆t

0 1

]
(4.4)

Where ∆t is the time step between successive measurements. Position at time k+ 1 is the

position at time k plus ∆t times the velocity term, and the velocity at time k + 1 is equal

to velocity at time k.

The observation at time k is denoted by the vector zk. The mapping of the true

value of the state xk to our measurement zk is through the matrix H

zk = Hkxk + vk, (4.5)

where the measurement noise vector vk is a zero-mean multivariate Gaussian random

variable with covariance matrix Rk = E{vkv
T
k }. As in the case of the process noise the

vector vk is uncorrelated in time, E{vkv
T
i } = 0, ∀i 6= k.

For this example assume position is the only measurable quantity. The measurement

vector zk is then a scalar, and the matrix H reduces to a row vector.

H =
[
1 0

]
(4.6)

The algorithm starts with an initial state estimate, x̂0, and covariance matrix, P 0,

of the initial estimate, where P k = E{(x̂k −xk)(x̂k −xk)
T}. The algorithm then follows a

cycle of predicting ahead using the transition matrix followed by updating the prediction

with a measurement.

The estimate of the next state, prior to measurement, is found using the previous

estimate of the state and the transition matrix to project ahead:

x̂k+1|k = Φkx̂k|k, (4.7)
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where the notation x̂j|k indicates the estimate x̂ at time j based on all the information up

to time k.

The estimate of the error covariance is also projected ahead using:

P k+1|k = ΦkP k|kΦ
T
k + Qk (4.8)

The estimate is then updated with the current measurement as:

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (4.9)

Where Kk is the Kalman gain (described below) and the term in the parentheses, zk −
Hkx̂k|k−1, represents the new information present in the measurement.

The estimate of the error covariance is also updated with the new gain

P k|k = (I −KkHk)P k|k−1 (4.10)

where I is the identity matrix.

The Kalman gain, Kk, is selected to minimize the mean square error E{(xk −
x̂k|k−1)

T (xk − x̂k|k−1)}. The mean square error for the estimate is the trace of the matrix

P k. It can be shown [91], that the Kalman gain that minimizes the mean square error is

given by:

Kk = P k|k−1H
t
k(HkP k|k−1H

t
k + Rk)

−1 (4.11)

Inspection of Equation (4.11) reveals that when the elements of Rk are large, indi-

cating large uncertainty in the measurements, the elements of the Kalman gain are small in

magnitude. This effectively lowers the weight of new measurements in updating the state

in Equation (4.9) and updating the estimate of the error covariance in Equation (4.10).

The next state would then be determined almost entirely by the previous state and the

state transition matrix as given in Equation (4.7). A trade-off exists in selecting Qk and

Rk between convergence and how well the filter attenuates noise. If the filter is modeled

with too little process noise Qk or too large measurement noise Rk, the filter will take a

very long time to converge, or may never converge, but will do a very good job of attenu-

ating noise in the measurements. On the other hand, if the filter is modeled with too large

process noise Qk or too little measurement noise Rk, the filter will converge rapidly but

do a poor job of attenuating measurement noise.
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Table 4.1: Prediction algorithm based on the Kalman filter

x̂0 ⇐ initial estimate
P̂ 0 ⇐ initial estimate
loop

Kk ⇐ P k|k−1H
t
k(HkP k|k−1H

t
k + Rk)

−1 {Compute Gain}
x̂k|k ⇐ x̂k|k−1 + Kk(zk −Hkx̂k|k−1) {Update State Estimate}
P k|k ⇐ (I −KkHk)P k|k−1 {Update Estimate Error Covariance}
x̂k+1|k ⇐ Φkx̂k|k {Project ahead to next state}
P k+1|k ⇐ ΦkP k|kΦ

t
k + Qk {Project ahead Estimate of error covariance}

end loop

If the parameters for the Kalman filter are known, the Kalman filter provides the

optimum MMSE estimate of the state [91]. The steps in the Kalman filter algorithm are

summarized in Table 4.1.

D. SPECIAL NETWORK FLAG PREDICTOR

The SOTDMA Communication State field is structured as shown in Table 4.2 and

Table 4.3 [1]. Clearly, most of the parameters in the table are predictable once the first

frame has been received. Some of the parameters are effectively deterministic, such as

time.

The SOTDMA Communication State field of an AIS message is almost entirely pre-

dictable. Figure 4.1 is presented to give an example of typical SOTDMA Communication

State field values as a function of time. The figures were created using data collected from

a single ship over a 24 hour period. Of the possible values contained in the Communi-

cation State field, only the number of received stations and the time slot offset are not

deterministic.

A difficult problem in determining the value of the communication state is determin-

ing the “timeout” value. When the timeout reaches zero, a new value is selected randomly

by the SOTDMA algorithm. The probability of correctly guessing this new value is 1/7.

Unfortunately, this timeout value also determines the meaning of the submessage.

The algorithm developed for predicting the Communication State field is summa-

rized in Table 4.4. The algorithm begins with the time of the message reception in seconds

of day (SOD), the received data (rx), and the previous values: timeout, SOD, number of
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Figure 4.1: SOTDMA fields
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Table 4.2: SOTDMA communication state after [1]

Parameter Bit Position Description Parameter Modeled
As

Sync State 19:18 0 UTC Direct, 1 UTC indirect,
2 Station synchronized to another
base station

random constant

slot time-out 17:15 Specifies the number of frames re-
maining until a new slot is se-
lected, 0 indicates this is the last
transmission in this slot

Random constant and
deterministic

Sub Message 14:1 Submessage meaning depends on
value of the timeout as described
in Table 4.3

See Table 4.3

Table 4.3: SOTDMA communication state submessage after [1]

Slot time-
out

Submessage Description Parameter modeled as

3,5,7 Received
Stations

Indicates the number of other sta-
tions currently received (between
0 and 16383)

slowly varying random
walk

2,4,6 slot num-
ber

Slot number used for this trans-
mission (between 0 and 2249)

deterministic

1 UTC
hour and
minute

Hours is indicated in bits 13:9
minute is coded in bits 8:2

approximately deter-
ministic

0 slot offset Indicates the relative jump to the
time slot for transmission in the
next frame.

Uniform distribution
around current slot
number

received stations, and slot number. It first generates estimates based on prior received

values, then demodulates the received data based on these estimates. Finally, it updates

the stored values to be used for future predictions.

E. RESULTS FOR AIS

In this section some experimental results are presented for the prediction algorithms

developed for the AIS field data. A 24 hour data set provided by the USCG and extracted
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Table 4.4: Predict communication state

i⇐ sod mod 60
{predictions}

estT imeout⇐ (pT imeout[i]− b(sod− pSod[i])/60 + 0.5c) mod 7
estSyncState⇐ pSyncState
if estT imeout = 3|5|7 then
estSubMessage⇐ pSlot[i];

else if estT imeout = 2|4|6 then
estSubMessage⇐ numStations;

else if estT imeout = 1 then
estSubMessage⇐ b(sod mod 24∗60∗60)/(60∗60)c∗29+b(sod mod 60∗60)/60∗22c

else if estT imeout = 0 then
estSubMessage⇐ 2248

end if
{demodulate}

{timeout, syncState, sub} ⇐ demod(r, est)
{update for future predictions}

pSod[i] ⇐ sod
ptimeout[i] ⇐ timeout
psyncState[i] ⇐ syncState
if timeout = 3|5|7 then
pSlot[i] ⇐ subMessage

else if estT imeout = 2|4|6 then
numStations⇐ subMessage

else if estT imeout = 0 then
newSlot⇐ (slot[i] + subMessage− 2250) mod 2250
pT imeout⇐ 7

end if

with the AISUser application is used to generate the results presented in this section. The

receptions are sorted by transmitting ship using the MMSI field. The data is then passed

to a predictor that attempts to predict the next message field-by-field given the previous

messages.

The receive station that generated this data received reports from 192 unique ships

on the collection date. Results from three of the 192 ships are presented below.

Three ships were selected for analysis. Two ships under way with two different

reporting precisions for the latitude and longitude fields. Ship A has a reporting precision
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100 counts and Ship C has a reporting precision of 10 counts. An additional ship, Ship B,

is selected that is not under way; this ship has a reporting precision of 1 count.

The length of time from a measurement to an estimate is variable. For example, if a

ship reports every six seconds, the error will nominally be based on a six second prediction.

In practice, the data set provided is missing some reports. This is particularly true when a

ship is far away from the receiving station. An additional criterion in ship selection for this

example is contiguous measurements, or a small number of missing measurements. The

time between measurements for the first 2000 measurements of ships A, B and C is shown

in Figure 4.2. Although there are instances of up to 90 seconds without a report, the plots

are scaled such that time differences of greater than 40 seconds are not shown to illustrate

the detail for the nominal differences. Notice the dip in time difference for Ship A around

measurements 400 and 750. This represents a time when the ship is changing course,

and the reporting rate increased accordingly. Ship A and Ship C are moving, and have

a nominal reporting interval of six seconds. Ship B is nominally stationary, and has a

nominal reporting interval of ten seconds. The following conclusions can be drawn from

Figure 4.2: there is significant variation around the nominal reporting interval, and the

data set is likely missing some reports.

Let the error, e[k], be defined as the difference between the reported (quantized)

value, q(xk) at time k and the estimation of the reported value, q(x̂k|k−1), at time k based

on all measurements before time k:

e[k] = q(x̂k|k−1)− q(xk) (4.12)

The q(·) operator represents the quantization operation resulting in the reported quantized

value rather than the actual unquantized value.

The entropy (in bits) of the error term, e, with discrete probability distribution

(p1, p2, . . . , pK) is defined as

H(p) =
K∑

k=1

pk log2(1/pk) (4.13)
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Figure 4.2: Time Between Position Reports

where we define 0 log2(1/0) = 0. The distribution of the error term can be estimated with

a normalized histogram.

1. Longitude Field

The latitude and longitude fields are unique in that there are many bits used to

represent the value, yet there is little information contained in additional measurements
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after one measurement has been received. Prediction results for the longitude field are

presented below. The results for the latitude field are similar.

A two-state Kalman filter is used to predict the longitude field. The state transition

matrix is identical to the example of predicting the location of a train on a straight track

discussed in Section IV.C

Φk =

[
1 ∆t

0 1

]
(4.14)

where the time step ∆t is taken to be one second.

The process noise must be modeled large enough to model maneuvers that a ship

may perform; this is effectively modeled as noise in the velocity term. Consider an un-

known acceleration term, a, modeled as a Gaussian random variable. The wk term in

Equation (4.3) becomes

wk =

[
∆t2

2

∆t

]
ak (4.15)

The random acceleration, ak, is modeled as a zero-mean Gaussian random variable with

standard deviation σak
. For this experiment σak

is chosen to be 0.71 counts/sec2, where

the units are binary counts, i.e. the raw values that are transmitted. There is no need to

convert to physical units.

The covariance matrix for the process noise Qk is then

Qk = 0.5

[
1/4∆t4 1/2∆t3

1/2∆t3 ∆t2

]
. (4.16)

The variance of the measurement error is set to

Rk = 20, (4.17)

with units of counts squared. This value is determined empirically by looking at many

sets of data. The variance of the measurement error represents both errors from the ship

estimate of its position and quantization errors.

The initial estimate x̂0 has the first element set to the initial measurement with the

second element, representing velocity, set to zero. The initial error covariance is set to

P 0 =

[
100 0

0 1010

]
, (4.18)
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representing a large uncertainty for the initial estimate of the velocity term, and a relatively

small uncertainty for the initial estimate of the position term.

The prediction results for the longitude field are presented for each of the three

ships in Figures 4.3, 4.4, and 4.5. For each of the ships, the estimates of longitude and

longitude rate are plotted. The error in the longitude estimate is also plotted versus time.

A histogram of this error with a measure of the entropy of the error is also presented.

Figure 4.3 shows the prediction performance of the Kalman filter based predictor

for a ship traveling at a nominally constant rate with a reporting precision of 100 counts.

Figure 4.3b illustrates two clear changes in longitude rate. Notice in Figure 4.3c and

Figure 4.3d that the distribution of values around the estimate is effectively just three

values, the nominal estimate and one on each side. Also notice that the rate changes that

occurs at approximately 2200 and 4600 seconds from the first measurement do not cause

an increase in error in the estimate. The ability to track rate changes is incorporated

into the process noise matrix Qk. The entropy of the error in the estimate, or the added

information from an additional measurement is approximately 1.2 bits.
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Figure 4.3: Longitude Field Prediction Performance Ship A
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Figure 4.4 shows the results from a ship that is not moving that reported with a

precision of 1 count. As indicated in Figure 4.4b, the velocity of Ship B is effectively zero

for this data set. Notice in Figure 4.4d that the distribution of values around the estimate

is effectively five values; two on each side of the estimate. The entropy of the error of the

estimate, or the added information from an additional measurement, is approximately 2.1

bits. Although the error in the estimate is lower for Ship B than for Ship A, because of

the higher reporting precision, the entropy of the error is actually higher.
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Figure 4.4: Longitude Field Prediction Performance Ship B

Figure 4.5 shows the results of a ship with similar motion to that of Ship A but

with a reporting precision of 10 counts. In this example the error in the estimate increases

as the magnitude of the rate of change in the longitude value increases. Changes in the

velocity term of the Kalman filter are modeled with a noise term. It will take some time

for the Kalman filter to settle on a new estimate for velocity; during this time the error

in the estimate will be of a larger magnitude. There is some unexplained non-uniformity

in the distribution of the error seen as some banding, or a set of outliers, in the error plot

that has not been accounted for. This non-uniformity can also be seen in the histogram
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at around +50 counts and −50 counts as two small humps. Notice in Figure 4.5d that the

distribution of values around the estimate is effectively 13 values, six on each side of the

estimate. For this case the entropy of the error estimate, or the added information from

an additional measurement is approximately 3.5 bits.
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Figure 4.5: Longitude Field Prediction Performance Ship C

Some observations follow: Both the reporting precision and whether or not a ship

is moving have an effect on the entropy of the AIS fields. It is apparent from the data

from Ship C that the error can not necessarily be modeled as a stationary random process.

The distributions for the longitude field will theoretically contain 228 elements, but for all

practical purposes only a small number of elements are required to represent the distribu-

tion when prediction strategies such as those presented here are used. The significance of
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this will become more apparent in Chapter VI which discusses the complexity of a MAP

detector.

2. SOTDMA Communication State Field

The SOTDMA field is predicted using the algorithm summarized in Table 4.4. The

residual entropy in the error from prediction of the Communication State field is not

dependent on the reporting precision or the reporting rate. Therefore, only the results for

one of the ships (Ship B) are presented.

The results from the Sync State field are trivial. This field did not change for any

of the three ships for the duration of the data sets. The calculated entropy for this field

would therefore be zero.

The prediction error for the Timeout field is presented in Figure 4.6a with a his-

togram showing the distribution of the error in Figure 4.6b. The Timeout field was cor-

rectly predicted approximately 79% of the time. For this data set the timeout was zero

approximately 18% of the time. When the timeout is zero, the next value of the timeout

is randomly selected from the set {1, 2, 3, . . . , 7}. Therefore the probability of an error in

prediction is 6/7. There are two conditions under which timeout is incorrectly estimated:

the slot timed out and a new timeout is randomly selected, or a message is missed such

that the previous timeout is unknown. When the slot times out, a timeout value of seven

is arbitrarily selected. For this reason, most of the errors in the estimate are on one side

of the distribution.

The results for the communication state submessage is shown in Figure 4.7. Close

examination of Figure 4.7a reveals three types of errors corresponding to errors estimat-

ing the time of day, the slot, or the number of received stations. If the timeout value

is incorrectly determined, that incorrect estimate will be used for determining which of

the three potential values of the submessage to estimate, leading to three distinct errors.

Observe from Figure 4.7b and 4.7c that the distribution of values around the estimate is

tight for approximately 75% of the values with the remaining 25% of the values are spread

over a large number of count values. There is a somewhat uniform distribution of errors

among the 2250 possible slot values, another Gaussian type distribution for the number

of receiving stations and then a time-varying distribution around the hour and minutes

of the Time field. The calculated entropy for the submessage is approximately 4.4 bits,

significantly less than the 14 bits that are transmitted for this field.
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Figure 4.6: Communications State Timeout Field Prediction Performance Ship B
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Figure 4.7: Communications State Submessage Field Prediction Performance Ship B

63



F. CHAPTER SUMMARY

This chapter develops an efficient method to predict the AIS data fields using three

different types of predictors. An algorithm is developed for prediction of the AIS Communi-

cation State field. The results of these predictors are then presented on three representative

data sets. The next Chapter discusses methods of incorporating knowledge of bit-stuffing

into a MLSD. In the following Chapter Maximum a posteriori detection is discussed; here,

the importance of distribution knowledge on performance and the importance of distribu-

tion reduction on computation time is illustrated.
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V. MLSD FOR BIT-STUFFING

This chapter investigates maximum likelihood sequence detection (MLSD) for a bit-

stuffed data source. The AIS uses the HDLC protocol which has bit-stuffing as one of its

components.

Bit-stuffing is used in various communications protocols, typically as a way to re-

move ambiguity in the detection of control flags or as a method to aid clock recovery. Typ-

ically a demodulator makes hard symbol-by-symbol decisions without incorporating the

knowledge that the data source is bit-stuffed. A demodulator making symbol-by-symbol

decisions is clearly not optimum for a source that has been bit-stuffed; symbol-by-symbol

decisions ignore the knowledge that the source has been encoded. In this chapter an opti-

mum approach is investigated. The maximum likelihood sequence detector for a bit-stuffed

data source is developed; starting by modeling the transmitted signal as a Markov chain.

Approximate performance bounds for the MLSD are calculated. Finally, a trellis receiver

structure is developed, and perform simulations using the Viterbi decoder algorithm are

performed.

A. INTRODUCTION AND MODEL

Bit-stuffing is the procedure of introducing an extra bit after a fixed number of

consecutive ones or zeros [93]. This chapter is concerned with the insertion of a zero

after k consecutive ones; let this be indicated as 1k bit-stuffing. The High-level Data Link

Control (HDLC) protocol is an application where 15 bit-stuffing is used. Bit-stuffing has

two obvious benefits: it aids in clock recovery, and it removes any ambiguity in locating

the start and stop flags, 0x7E (0160), for HDLC because these flags are not bit-stuffed.

Typically unstuffing is handled after demodulation. The demodulator is designed

as if the data bits were independent, making symbol-by-symbol decisions. A demodulator

making symbol-by-symbol decisions is clearly not optimum for a bit-stuffed source.

An alternate approach in demodulation is to take advantage of the knowledge avail-

able for the signal. For example, in 15 bit-stuffing the sequence 111111 is not a valid

sequence; if a demodulator outputs that sequence it would be known that an error oc-

curred. A maximum likelihood sequence detector will appropriately take advantage of this

information; this detector is efficiently implemented using the Viterbi algorithm.
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It should be noted that once the demodulator has made hard decisions nothing can

be done to improve the error performance. For example, with 15 stuffing if six ones are

received in a row, there has been an error, but the error could be in any of the six bits.

There is a 1/6 probability of correcting the error, but there is a 5/6 probability of creating

another error. Another approach is to use soft outputs to help decide which of the six

possible bits were in error; this technique is not optimal, and will not be discussed here.

Bit-stuffing is similar to run-length-limited (RLL) codes. A (d, k) run-length-limited

code has the property that consecutive 1’s are separated by at least d but no more than

k zeros. Bit-stuffed data has the property that consecutive zeros are separated by at least

zero ones, and no more than k ones. Many authors have investigated error control coding

for bit-stuffed data or RLL codes [94,95]. We [96] are not aware of any other attempts to

examine the performance of a maximum likelihood sequence detector for bit-stuffed data.

1. Bit-Stuffing

Let a be a vector of information bits. A new stuffed vector as is created by bit-

stuffing the original vector a. For this dissertation, bit-stuffing consists of the insertion of

a zero after each consecutive string of k ones, where the leftmost bit is transmitted first.

Let Bk denote the bit-stuff operator. For example, if

a = 011101, (5.1)

then

as = B2(a) = 0110101, (5.2)

where the overbar indicates an inserted bit. Let B−1
k denote the bit unstuffing operator

such that

a = B−1
k (as). (5.3)

The received vector of decision statistics can be defined as

r = as + w, (5.4)
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Figure 5.1: Model for 15 Markov Process Data Source

where w is a vector of samples from a bandlimited white noise process. The samples in w

have variance σ2.

2. Modeling the Bit-Stuffing Process

The sequence as can be modeled as a Markov chain. A Markov model for as =

B5(a), where a contains independent equally likely symbols, drawn from {0, 1}, is shown in

Figure 5.1. Note that for each state with the exception of state S5 the probability of a one

is equal to the probability of a zero, Pr(0) = Pr(1) = 0.5. For state S5, a zero is transmitted

with probability one. It is this extra piece of information that a demodulator can exploit

to obtain a slightly lower bit error rate (BER) than that of the symbol-by-symbol detector.

3. Demodulators

The first demodulator examined is a symbol-by-symbol maximum likelihood detec-

tor. This detector selects âs[k] based on the following criteria

âs[k] = arg max
as∈{0,1}

Pr(r[k]|as[k]). (5.5)

It should be clear that this first detector is not able to incorporate knowledge of valid or

invalid sequences; decisions are based only on the current sample.
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The second demodulator considered is the maximum likelihood sequence detector.

This detector selects the entire vector âs based on the following

âs = arg max
as∈As

Pr(r|as) (5.6)

where As is the set of valid stuffed sequences. The MLSD incorporates what is known

about the data source into the demodulator. The MLSD is efficiently implemented using

the Viterbi algorithm. An example of a trellis for decoding 15 bit-stuffed data is shown in

Figure 5.2, where the process is in state Sn if the previous n bits were ones. Transitions

due to a “1” are indicated with a dashed line, and transitions due to a “0” are indicated

with a solid line. The only state with more than one branch entering is state S0. The add-

compare-select function in the Viterbi algorithm needs only to be applied at this state,

reducing the computational complexity of the algorithm.

B. CATASTROPHIC ERRORS

Bit-stuffing is a catastrophic encoding process; a finite number of errors in the

encoded stream as can lead to an infinite number of errors in the recovered data stream

a. Most applications that use bit-stuffing are packet-based so an infinite number of errors

is reduced to a single packet error. An interesting question is “What is the probability of
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a catastrophic error given a single error in the encoded stream as?” A catastrophic error

occurs in the unstuffing operation when a bit is either removed erroneously or not removed

when it should be.

There are two first order phenomena where a single flipped bit leads to a catastrophic

error. First consider a bit removed erroneously due to a single error. This requires a special

sequence. For example, consider 15 bit stuffing and the sequence below:

011011010110011110011111010

Any error in the bits with the overbar will cause a bit to be erroneously removed leading to

a catastrophic error in the unstuffed output. Let these bits with the overbar be called type 1

bits. A type 1 bit for 1k stuffing is a zero that can be flipped to create a non-overlapping

sequence of k sequential ones.

Next, consider a stuffed bit erroneously not removed from the same sequence.

011011010110011110011111010.

Errors in the bits with the overbar will cause a stuffed bit to be erroneously left in the

stream leading to a catastrophic error in the unstuffed output. Let these be called type 2

bits. A type 2 bit for 1k stuffing is any of the k ones in a sequence of k sequential ones.

The probability (Pcbe) of a catastrophic error beginning at a particular bit is ap-

proximated by

Pcbe ≈ PsbePt1 + PsbePt2, (5.7)

where Pt1 and Pt2 are the probabilities that a particular bit is a type 1 or type 2 bit,

and Psbe is the probability of any particular stuffed bit is received in error. This is an

approximation and not an equality because higher order error events have been ignored,

such as two errors leading to the erroneous removal of a bit, or the case of a second error

canceling the effects of the first.

The probability of a frame containing a catastrophic error is

Pcfe = 1− (1− Pcbe)
n, (5.8)

where n is the length of the frame.
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A plot of the probability that a catastrophic error will begin at a certain bit, Pcbe,

along with the probability of a catastrophic error occurring during a frame, Pcfe, are shown

in Figure 5.3. Notice that Pcbe grows rapidly with frame length and then quickly levels out

to be approximately constant. For small probability of stuffed bit error and frame lengths

greater than around 20, Pcfe will increase linearly until the probability of multiple errors

becomes significant at which point it will slowly flatten out and approach one.

C. CALCULATION OF Pt2

There has been some interest in computing Pt2 by those interested in calculating the

probability that there will be N or more stuffed bits in a given sequence. Nolte, et al., [97]

performed brute force calculations of the number of non-overlapping runs of k ones in n

bits for their work in latencies in the Controller Area Network (CAN) bus. An alternative

approach is demonstrated below.

Let Nn,k be the number of non-overlapping runs of k ones in n bits. Begin by

calculating the probability of one or more non-overlapping runs of k ones in a stream of n

random bits Pr(Nn,k ≥ 1).

Markov chains can be used for this calculation without resorting to brute force or

Monte Carlo approaches [98]. Consider a sequence of n independent bits where Pr(1) = ρ,
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and Pr(0) = 1 − ρ. A state diagram for the Markov chain used for finding Pr(Nn,k ≥ 1)

is shown in Figure 5.4. The states are defined such that the Markov chain is in state Sk

when Nn,k ≥ 1 and in state Si, for 0 ≤ i < k, when Nn,k = 0 and the last i bits are ones.

Except for state Sk, each of the states advances with probability ρ or returns to state S0

with probability 1 − ρ. State Sk is referred to as the absorbing state; once entered it is

never exited.

The (k + 1)× (k + 1) state transition matrix for the Markov chain is

Π1 =



1− ρ 1− ρ 1− ρ . . . 1− ρ 0

ρ 0 0 . . . 0 0

0 ρ 0 . . . 0 0
...

...
...

. . . 0 0

0 0 ρ 0 0

0 0 0 0 ρ 1


, (5.9)

where Π1[i, j] = Pr(St+1 = i|St = j). The initial state probability vector is ξ0 = e0, where

ei is a length (k + 1) unit column vector with a 1 in the (i + 1)-th position and zeros

elsewhere, e0 =
[
1 0 0 . . . 0 0.

]T
. The state probability vector after n bits is given

by

ξn = Π1
ne0, (5.10)
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where ξn is the state probability vector at time n. The probability of at least one sequence

of k ones in n bits is the probability of being in state k, which can be written as

Pr(Nn,k ≥ 1) = eT
k Π1

ne0. (5.11)

The probability that there are no sequences of k ones in n bits is given by

Pr(Nn,k = 0) = 1− Pr(Nn,k ≥ 1). (5.12)

The above can be extended to determine Pr(Nn,k ≥ L), the probability of L se-

quences of k ones in a stream of n random bits. A state diagram for the Markov chain

used for finding Pr(Nn,k ≥ L) is shown in Figure 5.5. The extended Markov chain consists

of L cascaded rings, L−1 rings of identical form ending with a ring of the form identical to

Figure 5.4. The states are defined such that the Markov chain is in state SL−1,k if Nn,k ≥ L,

in state Si,k for 0 ≤ i < L − 1 if Nn,k = i + 1 and the most recent k bits are ones, and in

state Si,j for 0 ≤ i < L− 1 and 0 ≤ j < k if Nn,k = i and the last j bits are ones.

The L(k + 1)× L(k + 1) transition matrix for the extended Markov chain is

ΠL =



Π1
′ Z . . . . . . Z

N Π1
′ . . . . . . Z

Z N
. . . . . . Z

...
... . . . Π1

′ Z

Z ... . . . N Π1


(5.13)
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where ΠL[j+(k+1)i,m+(k+1)l] = Pr{S(t+1) = Si,j|S(t) = Sl,m)}, Z is a (k+1)×(k+1)

zero matrix and N is a (k + 1) × (k + 1) zero matrix with the exception of two terms in

the upper right corner representing the transition probabilities to the Sl,0 and Sl,1 states.

N =


0 . . . 0 1− ρ

0 . . . 0 ρ
...

. . . 0 0

0 0 0 0

 (5.14)

Π1
′ is identical to the Π1 matrix without the absorbing state Sl,N .

Π1
′ =



1− ρ 1− ρ 1− ρ . . . 1− ρ 0

ρ 0 0 . . . 0 0

0 ρ 0 . . . 0 0
...

...
...

. . . 0 0

0 0 0 ρ 0 0

0 0 0 0 ρ 0


(5.15)

The probability of being in a particular state after n bits is given by

ξn = ΠL
ne0, (5.16)

and the probability of at least L sequences of k ones in n bits is then

Pr(Nn,k ≥ L) = eT
L(k+1)−1ΠL

ne0, (5.17)

as before.

Consider determining Pt2, Pt2 is the probability that a specific bit in as is one of the

particular bits that when flipped will cause a “type 2” catastrophic error. This is found

by summing over the probability of exactly l sequences of length k, multiplying by the

number of bits (k) in those sequences and dividing by the total number of bits (n). Let B
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describe the event that a bit is in a run k ones. Pt2 is then

Pt2 =

bn/kc∑
l=1

Pr(B|Nn,k = l) Pr(Nn,k = l)

=
k

n

bn/kc∑
l=1

Pr(Nn,k = l)l. (5.18)

Pr(Nn,k = l) can be calculated using (5.17) as follows

Pr(Nn,k = l) = Pr(Nn,k ≥ l)− Pr(Nn,k ≥ l + 1). (5.19)

It should be noted that Philippou and Makri [99], and independently in the same

year Hirano [100], developed a formula for calculating Pr(Nn,k = l). Unfortunately it is

not clear how to extend their results to find Pt1.

D. CALCULATION OF Pt1

Consider the calculation of Pt1, Pt1 is the probability that any bit in as is one of the

particular zero bits that when flipped will create a non-overlapping sequence of k sequential

ones leading to a “type 1” catastrophic error. For example, for 12 stuffing the sequence

01000̂11 has type 1 bits located at the zeros with the overbar, but the zero with the hat

is not a type 1 bit, from the non-overlapping requirement. Calculating the probabilities of

these locations is unfortunately more difficult than the case of type 2 errors, but the same

general technique that was used to determine Pt2 can be applied. The sequences take the

form 1j−101k−j, where j is the location of the zero in the sequence of ones, j = 1 being the

leftmost bit position. Let N1j−101k−j

n,k be the number of runs of 1j−101k−j that do not overlap

with a run of k ones. A Markov chain for finding Pr(N1j−101k−j

n,k ≥ 1 ∀j ∈ {1, 2, . . . , k})
for 14 bit-stuffing is shown in Figure 5.6. The Markov chain can be extended as before to

calculate the individual terms, and find

Pt1 =
1

n

2×dn/ke∑
l=1

Pr(N1j−101k−j

n,k = l)l. (5.20)
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n,k ≥ 1 ∀j ∈ {1, 2, . . . , k}) for 14

Bit-Stuffing

Finally, Equation (5.7) may be used to find Pcbe. To understand the limits on the sum in

Equation 5.20 consider the following sequence for B2: “010101010” with n = 7 and k = 2.

The number of type 1 bits in this sequence is four. The limit represents the maximum

number of special bits that could occur in a sequence.

E. BOUNDS ON BIT ERROR RATE PERFORMANCE

Deriving an analytical expression for error performance is slightly more complicated

than finding an error performance bound for a linear convolutional code. Assuming the

all zeros sequence is sent results in an overly pessimistic error bound. This is because the

invalid codes are relatively far in Euclidean distance from the all zero sequence. Forney [51]
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showed that a tight lower bound for probability of error for a MLSD is

Psbe ≥ K0Q(dmin/2σ), (5.21)

where σ is the standard deviation of the noise component of the decision statistic. For

this example, K0 is the probability that an error of Euclidean distance dmin from the given

input sequence will lead to a valid sequence. A lower bound on performance can be found

relatively easily using the results from Section V.B.

The encoding format from bit-stuffing reduces the set of possible valid sequences.

To calculate a lower bound, first find the sequences that have a distance of dmin to one

of the invalid sequences. The lower bound on probability of bit error is then the average

number of dmin error events divided by the number of bits. These events are similar to

the “type 1” events, but not identical. For example, for 15 bit-stuffing the sequences that

have distance of 1 from an invalid sequence are 111110, 111101, 111011, 110111, 101111

or 011111. The events of interest are the zeros in the 15 stream as, where the number of

consecutive ones to the left and the right sum to at least k = 5. Let Zn,k be the number of

zeros in a sequence of n bits stuffed using Bk with k ones to the left and right of each zero.

As before Pr(Zn,k ≥ l) is found using Markov chains. This involves a Markov chain very

similar to the one used to find “type 1” errors. Figure 5.7 illustrates this for 13 stuffing.

Note that while this is very similar the Markov model used in calculating “type 1” errors for

14 stuffing, it is distinct beyond the change in bit-stuffing level; there is no non-overlapping

requirement. In addition, after k ones a zero is inserted, so the chain jumps to a different

state. It is important to notice that the Markov chain is run on data prior to bit-stuffing

(a), but it is predicting values for the bit-stuffed data (as). The sequence of bits where

this comes into play is 1k or 01k. In both of these cases it is known from the bit-stuffing

rule that the next bit in as will be a zero and it will be one of the special zeros. Similar

to Pt1 the results from the Markov chain are used to calculate K0

K0 = 1− 1

n

2×dn/ke∑
l=1

Pr(Zn,k = l)l (5.22)

Figure 5.8 shows calculated values of K0 for a few values of k versus the number

of bits n. Clearly smaller values of k and larger values of n will lead to a larger potential

performance improvement for the MLSD over symbol-by-symbol detection.
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The lower bound (5.21) is tight for high SNR. For low SNR the neglected terms

representing higher order events, more than one bit in error, become quite large and it is

no longer a useful bound.

F. SIMULATION

1. Results

Data generated according to (5.4) is used as input to two demodulators: the symbol-

by-symbol maximum likelihood detector and the maximum likelihood sequence detector

described above. Each demodulator generates an estimate, âs, of the vector as. The vector

â, an estimate of a, is then generated using (5.3). See Figure 5.9 for an illustration.

Figure 5.10 shows the BER performance of the two demodulators for 15 bit-stuffed

data with frame length n = 168 prior to unstuffing (as) and after unstuffing (a). Fig-

ure 5.11 shows the BER performance of the two demodulators for 12 stuffing. For 15

bit-stuffing and a frame length of 168 the term K0 is approximately 0.9458. For frame

lengths > 20, the BER of as using MLSD is approximately independent of frame length.

Clearly from Figure 5.8 and (5.21) the lower bound on BER for as using MLSD is a function

of frame length for small values of n.

For reasonably high SNR the BER performance for as using MLSD is close to the

lower bound K0Q(
√

2Eb/N0). This represents a modest gain in BER for the stuffed vector

as.

Figure 5.12 shows the gain in performance as a reduction in required Eb/N0 to

achieve an equal BER. Gains using the MLSD are on the order of 0.05 dB for as. For a

the gains using the MLSD are from 0.2− 1.0 dB.
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Figure 5.10: BER Curves Comparing MLSD and Symbol-by-Symbol Decisions for 15 Stuff-
ing

2. Interpretation and Discussion of Results

The results from the previous section are BER curves for the stuffed vector as. It is

interesting to compare the performance of the detectors with the unstuffed vector a. The

number of errors caused by a catastrophic error is a function of frame length. A longer

frame leads to a larger penalty for a catastrophic error. For this simulation a frame length

of 168 bits is used.

The BER performance difference between the MLSD and the symbol-by-symbol

detector is greater when measured for a then for as. As described above, a single error

in as can lead to multiple errors in a. This is the reason for the higher BER for a. The

vector a contains the original information so it is generally the BER curve of a that is

79



10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 2 4 6 8 10

P
b

Eb/N0 (dB)

a Viterbi

a Symbol-by-symbol

as Viterbi

as Symbol-by-symbol

K0Q(
√

2Eb/N0)

10−4

10−4

10−4

10−4

10−5

8 8.05 8.1 8.15 8.2 8.25

Figure 5.11: BER Curves Comparing MLSD and Symbol-by-Symbol Decisions for 12 Stuff-
ing

important. The reason for the performance improvement is that the MLSD will decrease

the likelihood of some of the decisions that would lead to catastrophic errors. Consider 15

stuffing and the sequence as = 101111010. Symbol-by-symbol decision errors at either of

the two over bar zero positions would lead to a catastrophic error in a. An error event of

2dmin would be required of the MLSD in order for a catastrophic error to take place.

G. CHAPTER SUMMARY

This chapter investigates MLSD for a bit-stuffed data source. The superior BER

performance of MLSD versus symbol-by-symbol decisions is demonstrated, and a lower

bound on performance is derived. The BER performance for both the stuffed stream as

and the unstuffed stream a have been investigated demonstrating the effect of catastrophic

80



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

G
ai

n
(d

B
)

Eb/N0 (dB)

a
as

Figure 5.12: Gain (dB) Comparison of MLSD and Symbol-by-Symbol Decisions for 15

stuffing

errors. The probability of a catastrophic error for a given stuffed bit error rate Psbe is

derived. A bound for the BER performance of the stuffed stream as is developed by

calculating probability of sequences with a Hamming distance of 1 from an invalid sequence.

For this analysis the case where the number of stuffed bits is known is not considered.

It is possible that the number of stuffed bits for a particular frame would be known. For

example, a protocol such as HDLC has a fixed unstuffed frame length while the stuffed

frame length for HDLC can be calculated by counting the bits between the start and stop

flags. The difference between these lengths will yield the number of stuffed bits. It is the

author’s belief that this additional knowledge can be used to further increase performance,

particularly in the unstuffed vector a.

The next Chapter investigates the multicategory classification problem of Field-

Based MAP detection.
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VI. FIELD-BASED MAP DETECTION

This chapter develops the MAP detector for an individual field of symbols. Here, a

field is defined as a consecutive sequence of related symbols. A typical transmitted signal

may contain many consecutive fields; here we consider the reception of a single isolated

field through an AWGN channel with no ISI introduced at the transmitter. Later in the

chapter the special case of reception of multiple synchronous signals is investigated. Both

of these cases result in a multicategory classification problem for a multivariate Gaussian

density function.

There are applications where data are transmitted as a sequence of fields, with

each field containing a number of symbols. Here, the field values are independent, but

the individual symbols contained in a field are not independent. For the example of AIS,

the a priori knowledge available is for a field of symbols rather than priors on individual

symbols. A detector that takes advantage of the additional information contained in the

field a priori probabilities will lead to a lower probability of field error than that of either

the MAP or ML symbol-by-symbol detector. Given that the fields are independent with

no ISI, the optimum detector for a field of symbols can be developed by observing only the

current field.

For this development the interest is in minimizing the probability of field error.

While in general this will tend to also minimize probability of bit error, it will not always

be the case, depending on the prior probabilities for particular field values. Field error is

often a more natural measure of performance. If the field values contain the important

information, one error or one hundred errors within a field result in the same cost.

A. SINGLE-CHANNEL FIELD-BASED MAP DETEC-
TOR

Consider an information vector a, where there is a priori knowledge of the rela-

tionship between a sequence of information symbols (a field). For example, we may know

Pr(ak, ak+1, . . . , ak+n = b) where b is one particular realization of the n-tuple of all possible

information symbols. The information vector a is mapped to a symbol vector α. This
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vector is received in the presence of AWGN resulting in the received vector

r = α + z, (6.1)

where the elements of z are zero-mean independent identically distributed (i.i.d.) Gaussian

random variables.

The maximum a posteriori (MAP) detector selects the field that maximizes Pr(α|y)

[3, 101]

α̂ = arg max
α

[Pr(α|y)]. (6.2)

This decision rule results in the minimum probability of field error.

1. Model

This development of the multiple decision MAP field detector loosely follows ex-

amples in [101] and [102]. Consider the reception of a length N sequence of symbols in

AWGN

y = α + z, (6.3)

where α is a N ×1 vector representing a field. Each element of α is a member of {−A,A}.
The noise vector z is an N × 1 vector of zero-mean i.i.d. Gaussian random variables with

variance σ2. The vector α represents one of the 2N possible field values. Let only M < 2N

field values have a non negligible probability of occurring. For each of the M likely field

values, there is an associated prior probability of occurrence, Pr[αk] = pk 6= 0.

Each element of the vector z has the same variance, and is independent of each of

the other elements. This leads to the conditional PDF of y given by

p(y|α) = (2πσ2)−N/2 exp

(
−(y −α)T (y −α)

2σ2

)
. (6.4)

The MAP detector selects the particular field α̂ ∈ {α1,α2, . . . ,αM} that maximizes

Pr(α|y). Using Bayes’ theorem and eliminating terms not dependent on α, it can be shown

this is equivalent to selecting α that maximizes p(y|α) Pr(α). This leads to the following

decision rule:

α̂ = arg max
α∈A

[Pr(α)p(y|α)]
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Where A is the set {α1,α2, . . . ,αM}. From Equation (6.4) this leads to:

α̂ = arg max
α∈A

[
Pr(α) exp

(
−(y −α)T (y −α)

2σ2

)]
. (6.5)

Any monotonic function of the right hand side of Equation (6.5) will lead to an identical

result. The form of Equation (6.4) leads to the natural logarithm as a good choice, resulting

in

α̂ = arg max
α∈A

[
ln(Pr[α])−

(
(y −α)T (y −α)

2σ2

)]
. (6.6)

2. Discriminant Functions

Another way to pose the same problem is in terms of discriminant functions. Dis-

criminant function is a term borrowed from the pattern classification field. The discrim-

inant function, denoted as gi(y), is a function of the observation vector that leads to the

decision rule of selecting α̂ = αk if

gk(y) > gl(y) ∀l 6= k. (6.7)

For the MAP detector

gi(y) = Pr[αi]p(y|αi); (6.8)

this choice for discriminant function is not unique, Equation (6.7) remains valid if gi(y)

is replaced with f(gi(y)) for any monotonically increasing function f(·). Because of the

form of p(y|αk) given in Equation (6.4), a logical choice for f(·) is the natural logarithm,

resulting in a new discriminant function

gi(y) = ln(Pr[αi])−
(

(y −αi)
T (y −αi)

2σ2

)
. (6.9)

Observe from Equation (6.9) that the discriminant functions consist of two terms: a

squared Euclidean distance measure weighted by the noise power and the a priori proba-

bility. If Pr[αk] = Pr[αl] ∀k, l then this results in the minimum distance decision rule of

the ML detector. Note that unlike the ML decision rule, knowledge of the noise power σ2

is required for the MAP detector. It is clear from Equation (6.9) that for large values of

σ2 the decision rule is weighted heavily by the prior probabilities.
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Equation (6.9) can be expanded to write the discriminant function as

gi(y) = ln(Pr[αi)]−
(

yT y + αT
i αi − 2yT αi

2σ2

)
. (6.10)

The term yT y can be removed because it is common to each discriminant function, leaving

a new simplified discriminant:

gi(y) = σ2 ln(Pr[αi])−
αi

T αi

2
+ yT αi (6.11)

If each of the signals have equal energy, the αT
i αi terms can be removed from Equa-

tion (6.11), and the discriminant function can be further simplified to

gi(y) = σ2 ln(Pr[αi]) + yT αi. (6.12)

The decision region, Rk, consists of the values of y for which αk maximizes (6.5).

The boundaries of these regions are the (N − 1)-dimensional hyperplanes where y satisfies

gk(y) = gl(y). (6.13)

To show that the boundaries are hyperplanes, consider the discriminant functions for the

general MAP case. The boundary is then given by the values of y satisfying the following

equation

ln(Pr[αk)]−
(

(y −αk)T (y −αk)

2σ2

)
= ln(Pr[αl)]−

(
(y −αl)

T (y −αl)

2σ2

)
. (6.14)

Expand the above and cancel common terms to obtain

ln(Pr[αk])− αT
k αk − 2yT αk

2σ2
= ln(Pr[αl])−

αT
l αl − 2yT αl

2σ2
, (6.15)

and finally collect the y terms to obtain

yT (αk −αl) =
1

2
αk

T αk −
1

2
αl

T αl − σ2 ln

(
Pr[αk]

Pr[αl]

)
. (6.16)
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The right hand side of Equation (6.16) is a constant scalar. The decision boundary that

results is a hyperplane parallel to the vector y which satisfies yT (αk −αl) = 0.

If the field values are all equal energy, the discriminant functions in (6.12) can be

used, resulting in boundaries defined by

yT (αk −αl) = σ2 ln

(
Pr[αl]

Pr[αk]

)
. (6.17)

There are two special cases which guarantee reachability of all decisions for some

specific value of y (a value of y exists such that decision α̂l is made ∀l). The first case

is equal energy symbols; the second is equal probability sequences. In the general case of

unequal energy symbols and unequal probabilities, there may be some decisions that will

never be made no matter what the value of the observation vector y.

For the equal energy case:

yT (αk −αl)
Hk
>
<
Hl

C (6.18)

Let y = Bαk, a scaler B can always be found such that decision k is made.

For the equal probability case, the decision rule results in the minimum distance

decision. Setting the observation vector to αk will result in a distance of zero and decision

k will be made.

Figure 6.1 illustrates the decision regions for the two symbol case in R2. Notice the

direction the decision boundary moves as the energy in a symbol is increased or the prior

probability is changed.

Some observations:

• If Pr[αk] = Pr[αl] ∀k, l, the decision rule is the minimum distance decision rule

of the ML detector, and an estimate of the noise power is no longer required.

• For large σ2, the decision rule is heavily weighted by the prior probabilities.

• The M decision regions are separated by (N − 1)-dimensional hyperplanes.

• For the general case, with no restriction for equal energy signals or equal prior

probabilities, there may be decisions which are not made no matter what the value

of y. If either of the following conditions are true, αT
k αk = αT

l αl ∀l, k or Pr(αk) =

87



decreasing αT
k αk

decreasing Pr(αk)

decreasing Pr(αl)

decreasing αT
l αl

αk

α[1]

α[0]

αl

Rl

Rk

Figure 6.1: Decision regions for R2

Pr(αl) 6= 0 ∀l, k, then there will always be a value of y that will lead to decision

αi.

3. Probability of Error

In this section the probability of field error for the MAP detector is derived, then

a useful bound is developed that is more practical to calculate. An error occurs when the

decision α̂ = αk is made when αl, l 6= k was sent. The probability of error is described

by the following equation:

Pr(error) =
∑

k

∑
l 6=k

Pr(y ∈ Rk|αl) Pr[αl]

=
∑

k

∑
l 6=k

∫
Rk

p(y|αl) Pr[αl] dy
(6.19)
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where Rk is the region where decision k is made. The probability of error can also be

written as 1− Pr(correct):

Pr(error) = 1− Pr(correct)

= 1−
∑

k

Pr(y ∈ Rk|αk) Pr(αk)

= 1−
∑

k

∫
Rk

Pr(y|αk) Pr(αk) dy

(6.20)

Both (6.19) and (6.20) involve multiple (N − 1) − fold integrals over decision regions,

resulting in complicated integration limits. A simplification can be found by considering

the pairwise union upper bound.

To develop the upper bound, begin by rewriting the probability of error as

Pr(error) =
∑

k

∑
l 6=k

Pr[gl(y) > gk(y)|αk] Pr(αk)− all the joint terms (6.21)

where each Pr[gl(y) > gk(y)|αk] term is the pairwise probability of deciding α̂ = αl over

α̂ = αk given αk was sent. The joint terms are the intersecting areas that get accounted

for multiple times from only considering pairwise decisions.

Calculation of Pr[gl(y) > gk(y)|αk] still involves an (N − 1) − fold integral, but

the complexity of the decision region boundary is reduced to that of a single hyperplane

defined by (6.16). The simplified decision region, along with the Gaussian form of p(y|α),

allows the transformation of the problem to a one-dimensional integral.

We can now use the equation for the received vector y (6.3) in the decision boundary

defined in (6.16) to obtain

(αk + z)T (αk −αl) =
1

2
αT

k αk −
1

2
αT

l αl − σ2 ln

[
Pr(αk)

Pr(αl)

]
2zT (αk −αl) = −αT

k αk −αT
l αl + 2αT

k αl − 2σ2 ln

[
Pr(αk)

Pr(αl)

]
= −(αk −αl)

T (αk −αl)− 2σ2 ln

[
Pr(αk)

Pr(αl)

] (6.22)

The noise vector z from Equation (6.3) is a vector of zero-mean i.i.d. Gaussian random

variables with covariance σ2I. The random variable 2(αk −αl)
T z, is therefore zero-mean
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with variance σ2
1 = 4σ2(αk −αl)

T (αk −αl).
1 The pairwise probability of making decision

α̂l given αk was sent is

Pr[gl(y) > gk(y)|αk] =

∫
R′

k

p(y|αk) dy

= Pr

[
2zT (αk −αl) < −

(
d2

lk + 2σ2 ln

[
Pr(αk)

Pr(αl)

])]

= Pr

2zT (αk −αl)

2σdlk

< −
dlk + 2σ2 ln

[
Pr(αk)
Pr(αl)

]
2σdlk


= Pr

2zT (αk −αl)

2σdlk

> +
d2

lk + 2σ2 ln
[

Pr(αk)
Pr(αl)

]
2σdlk


= Q

d2
lk + 2σ2 ln

[
Pr(αk)
Pr(αl)

]
2σdlk


= Q

(
dlk

2σ
+

σ

dlk

ln

[
Pr(αk)

Pr(αl)

])

(6.23)

Where R′
k is the region for decision α̂ = αk when only two decisions are considered; the

other decision being α̂ = αl. The term dlk is given by dlk =
√

(αk −αl)T (αk −αl).

This result is used in (6.21) to obtain the union upper bound2 for the probability

of field error Pfe(MAP ):

Pfe(MAP ) ≤
∑

k

Pr(αk)
∑
l 6=k

Q

(
dlk

2σ
+

σ

dlk

ln

[
Pr(αk)

Pr(αl)

])
(6.24)

For high SNR the “joint terms”, neglected in developing this bound, become small and

this bound becomes tight.

A less complex upper bound may be found by considering the minimum distance,

dmin, as a worst case. Form the M -ary upper bound [8] by considering all of the sequences

equally likely and recognizing that all of the distance terms dlk in Equation (6.24) will be

1Given a random vector x with covariance matrix Rx the vector y given by the linear transformation
Ax has autocorrelation function Ry = ARxA∗T [103]. 4σ2(αk −αl)T (αk −αl)

2The union upper bound says Pr (
⋃

iAi) ≤
∑

i Pr(Ai) [11]
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greater than or equal to dmin. The M -ary upper bound is then given by

(M − 1)Q

√dmin
2

2N0

 , (6.25)

where dmin is the minimum Euclidean distance between any of the field values. Notice that

for this bound there are still only M possible field values transmitted rather than 2N , but

the field values are assumed equally likely. Although this bound is simple to calculate, it

is not very tight for large values of M . Hereafter, this bound (6.25) will not be used.

4. Matrix Formulation

For the purposes of simulation of field error rate and calculation of the upper bound,

it is convenient to write the above equations in matrix notation. By writing the equations

in a matrix format, some of the loops can be eliminated allowing the use of optimized

matrix libraries.

Consider the transmission of L fields. The received signal Equation (6.3) can be

extended as a matrix of received fields as

Y = B + Z, (6.26)

where B is an N × L matrix of the L particular transmitted column vectors α, and N is

the number of symbols in each vector α. Each column vector α is drawn from the M < 2N

values for the vector α with non-negligible a priori probabilities (pk > ε). The matrix Z

is an N × L matrix of the L noise column vectors z.

The discriminant functions given in 6.11 can be calculated using matrix notation

as follows:

G = σ2 ln(poT
L)− 1

2
(oT

NAαα∗)
T oT

L + AT Y ), (6.27)

where ln(·) of a matrix is an element-by-element natural log. The vector oj is a length j col-

umn vector of ones. The vector p is anM×1 vector of the a priori probabilities for each pos-

sible field Pr(αk) = pk. The matrix Aαα∗ is an N×M matrix of column vectors, where the

ith column of Aαα∗ is given by
[
αi[0]α∗i [0] αi[1]α∗i [1] · · · αi[N − 1]α∗i [N − 1]

]T
. The ma-

trix A is an N×M matrix of the possible transmitted signals A =
[
α0 α1 . . . αM−1

]
.
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Table 6.1: Example distributions for α

field field values separation of 1 field values separation of 10 pk ln(pk)

α0 n - 5 n-50 0.011 -4.4
α1 n - 4 n-40 0.003 -5.7
α2 n - 3 n-30 0.005 -5.4
α3 n - 2 n-20 0.015 -4.2
α4 n - 1 n-10 0.109 -2.2
α5 n n 0.519 -0.7
α6 n + 1 n+10 0.291 -1.2
α7 n + 2 n+20 0.031 -3.5
α8 n + 3 n+30 0.004 -5.4
α9 n + 4 n+40 0.003 -5.9
α10 n + 5 n+50 0.008 -4.8

The resulting M × L matrix G can be used to determine the field-based MAP

estimate for α. The maximum value in each column of G is associated with the estimate

for α from the MAP decision rule.

5. Results

Consider the case of 11 likely field values shown in Table 6.1. Each field is 28 bits

in length, (N = 28). With 28 symbols per field, there are 228 possible field values; for this

example we consider M = 11 of them to be likely. In practice this distinction is made by

considering the possible field values to be those whose a priori probability pk > ε, for some

selected threshold ε. By making this selection there is a residual error rate of

Pres =
∑

k,∀ρk<ε

ρk. (6.28)

The amount of tolerable residual error will ultimately determine the maximum practical

value for ε.

Each field has a priori probability and values as shown in the Table 6.1. This

section presents results for two cases. In the first case, the likely transmitted values are

represented as consecutive numbers. In the second, the values are separated by steps of

ten. In each case, the transmitted symbols are mapped to the field values using binary

encoding. In each case, the Euclidean distance between field values depends on a nominal

initial value n.
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Figures 6.2b and 6.3b show the field error performance of the field-based MAP

detector compared to the field error performance of a ML symbol-by-symbol detector for

a field value separation of one and ten respectively. The performance of the two detectors

is found by simulation. The upper bound is from Equation (6.24). This bound and the

coherently detected antipodal signaling curves are analytic results.

Figure 6.2b shows the field error performance for the field-based MAP detector

versus the field error performance for a ML symbol-by-symbol detector. In this example

the values are separated by a value of one, with distribution illustrated in Figure 6.2a.

Notice in this case the field error rate of the field-based MAP detector is close to that of

the bit error rate for the optimum detector for antipodal signaling. The field-based MAP

detector performs significantly better compared to the field error rate performance of the

symbol-by-symbol detector; providing approximately 2 – 6 dB of gain.

Figure 6.3b shows the field error performance for the field-based MAP detector

versus the field error performance for a ML symbol-by-symbol detector. In this example

the values are separated by a value of ten with distribution illustrated in Figure 6.3a.

Because of the increased separation between field values, the field error rate performance

is superior to that of the bit error rate performance of the optimal detector for antipodal

signals. This results in better field error rate performance than the corresponding symbol-

by-symbol detector; providing approximately 6 – 8 dB of gain.

The field error performance of the ML symbol-by-symbol detector is given by

Pfe(s−b−s) = 1− (1− Pse)
N , (6.29)

where Pse is the probability of individual symbol error. The field error upper bound is the

union upper bound (6.24).

The field values used in the bounds and the performance curves are generated by

randomly selecting a number n ∈ {M/2, 2N−M/2−1}, and then generating the appropriate

M = 11 field values according to Table 6.1. Assuming a symbol can take on one of two

values, a field of length N can represent 2N different values. These 2N values are mapped

to the integers from 0 to 2N − 1. It should be apparent that the distances dlk depends on

the values a field can represent.

Notice the significant difference in performance for the two cases. The reason for

the difference in performance between the two is the pairwise distances for the data used

in Figure 6.3b are greater than the pairwise distances for the data used in Figure 6.2b.
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Consider the case N = 10, M = 4 and n = 20 and a field separation of ten. This will

lead to the pairwise distances shown in Table 6.2. Now consider the same case with a

field separation of 1. This leads to the pairwise distances shown in Table 6.3. Notice the

difference in the minimum distance, dmin, for the two cases. The field error performance

of the receiver will increase as the Euclidean distance between the pairs increases. Assum-

ing equally likely field values, the smallest pairwise distance dmin will have the greatest

contribution to the probability of error.

Table 6.2: Distances separation of 10

pair Euclidean Distance

d10,20 1.2649
d10,30 0.8944
d10,40 0.8944
d20,30 0.8944
d20,40 1.2649
d30,40 1.2649

Table 6.3: Distances separation of 1

pair Euclidean Distance

d19,20 1.0954
d19,21 0.8944
d19,22 0.8944
d20,21 0.6325
d20,22 0.6325
d21,22 0.8944

B. JOINT MAP DETECTOR (SYNCHRONOUS SIG-
NALS)

In the next chapter, Chapter VII, the Field-based MAP detector is extended to

handle multiple asynchronous cochannel signals. Below the Field-based MAP detector is

extended to the special case of synchronous cochannel reception. Synchronous reception is

when the symbols from each source have identical start and stop times from the perspective

of the receiver.
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Consider two signals each with fields of length N , synchronized in time. As before,

the kth field from the ith signal can take on one of Mi,k values. The simultaneous syn-

chronous reception of signal 0 and signal 1 with M0,k and M1,k possible values respectively

will, in general, lead to M0,k ×M1,k combinations. Note the implicit assumption that the

underlying waveforms used to generate the symbol sequences have possibly unequal signal

powers, and a cross-correlation coefficient ρ, given by (6.30), with absolute value less than

1, |ρ| < 1. Now the decision problem is deciding which of M0,k ×M1,k possible field pairs

was sent. The performance of the resulting detector will depend on the possible values of

the fields for each signal. The pairwise distances between these field-pairs may be much

smaller than the distances for the single case.

1. Model

Consider the synchronous joint reception model defined in Chapter II. Recall the

cross-correlation coefficient between the two signaling waveforms defined as

ρ =

∫
ψ0(t)ψ

∗
1(t) dt√∫

ψ0(t)ψ∗0(t) dt
√∫

ψ1(t)ψ∗
1(t) dt

. (6.30)

For notational convenience, let y′ be an interleaved vector of each matched filter output.

For the two channel case:

y′ =
[
y0[0] y1[0] y0[1] y1[1] · · · y0[N − 1] y1[N − 1]

]T
(6.31)

In this section the prime is used to represent an interleaved vector. The vectors y0 and y1

are the outputs of unit-energy filters (
∫
h(t)h∗(t) dt = 1) matched to the first and second

signal respectively, and sampled at the symbol period. The output vectors are

y0 = α0 + ρα1 + z0, (6.32)

and

y1 = ρα0 + α1 + z1, (6.33)

where the vectors α0 and α1 are the transmitted values for signal 0 and signal 1 respectively,

and the elements of z0 and z1 are zero-mean i.i.d. Gaussian random variables each with

variance σ2. Note that the variance of the random variables contained in the vectors z0

and z1 are equal because they are both obtained from filtering the same AWGN process
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with unit-energy filters. The cross-correlation of z0 and z1 is given by E{z0z
∗T
1 } = σ2ρI,

where ρ is the cross-correlation coefficient.

The covariance matrix of the noise component of the vector y′ defined in Equa-

tion (6.31) is Σ given by

Σ = σ2



1 ρ 0 0 . . . 0 0

ρ 1 0 0 . . . 0 0

0 0 1 ρ . . . 0 0

0 0 ρ 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 ρ

0 0 0 0 . . . ρ 1


(6.34)

The interleaved observation vector from (6.31) can be re-written as:

y′ = α′
k + z′ (6.35)

where the vector α′
k is an interleaved vector of one of the M0,j ×M1,l possible transmitted

pairs:

αk
′ =



α0,j[0] + ρα1,l[0]

ρα0,j[0] + α1,l[0]

α0,j[1] + ρα1,l[1]

ρα0,j[1] + α1,l[1]
...

α0,j[N − 1] + ρα1,l[N − 1]

ρα0,j[N − 1] + α1,l[N − 1]


(6.36)

The vector α′
k is built from one of the pairs of vectors described in

{
(α0,0,α1,0), (α0,0,α1,1), · · · , (α0,0,α1,M1−1), (α0,1,α1,0), · · · , (α0,M0−1,α1,M1−1)

}
(6.37)
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The conditional PDF of the length 2N vector y′ is then multivariate Gaussian given

by

p(y′|α′
k) =

1

(2π)2N/2|Σ|1/2)
exp

(
−(y′ −α′

k)
T Σ−1(y′ −α′

k)

2

)
(6.38)

2. Discriminant Functions

The discriminant function, as introduced in Section VI.A.2, for the conditional PDF

given in Equation (6.38) is given by [102]

g̃i(y
′) = ln(Pr[α′

i])−
(

(y′ −α′
i)

T Σ−1(y′ −α′
i)

2

)
= ln(Pr[α′

i])−
(

(y′)T Σ−1y′ − 2(α′
i)

T Σ−1y′ + (α′
i)

T Σ−1α′
i

2

) (6.39)

The second line of (6.39) follows from the identity Σ−1 = (Σ−1)∗T from the complex

conjugate symmetry of the covariance matrix. The term (y′ − α′
i)

T Σ−1(y′ − α′
i) is the

square of the Mahalanobis distance [11] for y′ and α′
i. The terms y′T Σ−1y′ are common

to each discriminant; they may be removed leading to new a simplified discriminant:

gi(y
′) = ln(Pr[α′

i])−
1

2
(α′

i)
T Σ−1α′

i + (α′
i)

T Σ−1y′ (6.40)

As in the single-channel case, the decision boundaries are still hyperplanes. Unlike the

single-channel case, the hyperplane defining the decision boundary will not, in general, be

perpendicular to the vector connecting α′
l and α′

k.

3. Probability of Error

The development of the probability of error calculation closely follows that for the

single-channel case developed in Section VI.A.3. The union bound is used in an identi-

cal fashion. The only difference is in the calculation of the pairwise probability of error,

Pr[gl(y
′) > gk(y

′)|α′
k]. To derive the probability of error, begin by writing out the descrip-

tion of the decision boundary gl(y
′) = gk(y

′).

ln(Pr[α′
l])−

(α′
l)

T Σ−1α′
l

2
+ (α′

l)
T Σ−1y′ = ln(Pr[α′

k])−
(α′

k)
T Σ−1α′

k

2
+ (α′

k)
T Σ−1y′ (6.41)
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then collect the y′ terms on the right hand side.

(α′
l)

T Σ−1y′ − (α′
k)

T Σ−1y′ =− ln(Pr[α′
l]) + ln(Pr[α′

k]) +
(α′

l)
T Σ−1α′

l

2
− (α′

k)
T Σ−1α′

k

2

(α′
l)

T Σ−1y′ − (α′
k)

T Σ−1y′ = ln

(
Pr[α′

k]

Pr[α′
l]

)
+

(α′
l)

T Σ−1α′
l

2
− (α′

k)
T Σ−1α′

k

2

(6.42)

The decision boundary is then found by then assuming α′
k was sent and replacing the

interleaved observation vector, y′, with the right hand side of Equation (6.35).

(α′
l)

T Σ−1(αk
′ + z′)− (α′

k)
T Σ−1(αk

′ + z′) = ln

(
Pr[α′

k]

Pr[α′
l]

)
+

(α′
l)

T Σ−1α′
l

2
− (α′

k)
T Σ−1α′

k

2

(α′
l −α′

k)
T Σ−1z′ = ln

(
Pr[α′

k]

Pr[α′
l]

)
+

(α′
l)

T Σ−1α′
l

2
+

(α′
k)

T Σ−1α′
k

2

−(α′
l)

T Σ−1α′
k

(α′
l −α′

k)
T Σ−1z′ = ln

(
Pr[α′

k]

Pr[α′
l]

)
+

(α′
l −α′

k)
T Σ−1(α′

l −α′
k)

2

(6.43)

Since z′ has covariance matrix Σ, the random variable (α′
l − α′

k)
T Σ−1z′ has variance

σ2′
1 = (α′

l −α′
k)

T Σ−1(α′
l −α′

k)
∗.3

3Given a random vector x with covariance matrix Rx the vector y given by the linear transformation
Ax has autocorrelation function Ry = ARxA∗T [103].

(α′
l −α′

k)T Σ−1Σ((α′
l −α′

k)T Σ−1)∗T = (α′
l −α′

k)T Σ−1∗(α′
l −α′

k)
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Following the same methods used in the single-channel case in Section VI.A.3 the

probability of pairwise error is given by

Pr[gl(y
′) > gk(y

′|α′
k)] =

∫
R′

k

p(y′|α′
k) dy′

= Pr

[
(α′

l −α′
k)

T Σ−1z′ < −
(

ln

(
Pr[α′

k]

Pr[α′
l]

)
+
d2

M(l, k)

2

)]

= Pr

(α′
l −α′

k)
T Σ−1z′ < −

ln
(

Pr[α′
k]

Pr[α′
l]

)
+

d2
M (l,k)

2

dM(l, k)


= Pr

(α′
l −α′

k)
T Σ−1z′

dM(l, k)
> +

ln
(

Pr[α′
k]

Pr[α′
l]

)
+

d2
M (l,k)

2

dM(l, k)


=Q

 ln
(

Pr[α′
k]

Pr[α′
l]

)
+

d2
M (l,k)

2

dM(l, k)


=Q

(
1

dM(l, k)
ln

(
Pr[α′

k]

Pr[α′
l]

)
+
dM(l, k)

2

)

(6.44)

Where d2
M(l, k) is the squared Mahalanobis distance [11] between α′

l and α′
k given by

d2
M(l, k) = (α′

l −α′
k)

T Σ−1(α′
l −α′

k) (6.45)

Notice if Σ = σ2I then d2
M(l, k) = d2

lk/σ
2, and Equation (6.44) reduces to Equation (6.23).

Following the method of Section VI.A.3, the result in (6.21) can be used to obtain

the union upper bound for the probability of field error for joint signals Pfe(JMAP ):

Pfe(JMAP ) ≤
∑

k

Pr(α′
k)
∑
l 6=k

Q

(
1

dM(l, k)
ln

(
Pr[α′

k]

Pr[α′
l]

)
+
dM(l, k)

2

)
(6.46)

4. Matrix Formulation

As in the single-channel case, it is often useful to develop a matrix formulation

of the equations to allow the use of vector math libraries for computation. The matrix

formulation is developed for Equation (6.40), in a similar fashion to that of the single-

channel case (6.27).
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The received signal (6.31) can be extended as a matrix of received fields as

Y ′ = B′ + Z′ (6.47)

Where B′ is an 2N × L matrix of the L transmitted column vectors α′, and 2N is the

number of symbols in each vector α′. Each column vector α′ is drawn from the M0M1 <

22N possible values for the vector α′. The matrix Z′ is an 2N × L matrix of the L noise

column vectors z′.

The discriminant functions given in (6.40) can be calculated using matrix notation

as follows

G = ln(poT
L)− 1

2
(oT

2NAαΣ−1α∗)
T oT

L + (A′)T Σ−1Y ′) (6.48)

The vector oj is a length j column vector of ones. The vector p is an (M0M1)×1 vec-

tor of the prior probabilities Pr(α′
i). The matrix AαΣ−1α∗ is a 2N× (M0M1) matrix of col-

umn vectors, where the ith column of AαΣ−1α∗ is given by diag{α′
iΣ

−1α′
i
∗T}. The matrix A′

is anN×M matrix of the possible transmitted signals A′ =
[
α′

0 α′
1 . . . α′

(M0−1)(M1−1)

]
The resulting (M0M1)×L matrix G′ can be used to determine the field-based MAP

estimate for α′.

5. Results

Results are presented below for the Joint field-based MAP detector with two syn-

chronous signals. The values transmitted for each signal are determined using Table 6.1 in

the same manner as for the single-channel case.

Figures 6.4 and 6.5 show the field error performance of the joint field-based MAP

detector compared to the field error performance of a Joint ML symbol-by-symbol detector

for a field value separation of one and ten respectively. The performance of the two

detectors was found by simulation; the upper bound and the coherently detected antipodal

signal curves are analytic results.

Figure 6.4 shows the field error performance for the joint field-based MAP detector

compared to the field error performance for a Joint ML symbol-by-symbol detector. Note

that a single-channel receiver for cochannel reception is not considered; the performance

of a single channel receiver is unacceptably poor for highly correlated signals of similar

received power levels. In this example the values are separated by a value of one with

distribution illustrated in Figure 6.2a. Field error performance curves are generated for

three different values of the cross-correlation coefficient, ρ. Notice the case of ρ = 0
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gives identical performance to that of the single-channel case presented in Figure 6.2b. If

ρ = 0, the underlying waveforms used to transmit the information are uncorrelated and

the optimal joint receiver reduces to two single-channel receivers.

Figure 6.5 shows the field error performance for the field-based MAP detector versus

the field error performance for a Joint ML symbol-by-symbol detector. In this example the

values are separated by a value of ten with distribution illustrated in Figure 6.3a.

The field error performance of the Joint ML symbol-by-symbol detector is given by

Pfe = 1− (1− Pse)
N (6.49)

Where Pse is the probability of individual symbol error from a ML detector.

The field error upper bound is the union upper bound (6.46) developed in Sec-

tion VI.B.3. The probability of bit error for antipodal is also included for reference. As in

the case for the single-channel example, the performance will depend on the distribution

of possible transmitted values for each channel.

Notice the significant difference in performance for the two cases. The reason for

the difference in performance between the two is the pairwise distances for the data used

in Figure 6.5 are greater than the pairwise distances for the data used in Figure 6.4.

C. COMPUTATIONAL COMPLEXITY

Here, we briefly examine the computational complexity of a brute force implemen-

tation of the MAP field detector with field length N . Calculation of the discriminants in

Equation (6.11) involves 2N multiply and accumulate (MAC) operations. There are 2N

discriminant functions resulting in a complexity of ≈ 2N2N MACs per field. For a field

length of 10 bits this amounts to approximately 20,000 MACs, for a field length of 15 this

is on the order of 106 operations. There is an exponential dependence on field length that

makes this problem unfeasible for fields consisting of many more than ten symbols.
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Figure 6.4: Joint Field-Based MAP for 28 bit Field Values Separated by 1
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Figure 6.5: Joint Field-Based MAP for 28 Bit Field Values Separated by 10
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One obvious reduction can be made by setting field probabilities that are negligible

to zero. If only M non-negligible field probabilities remain, the complexity is reduced to

2MN . Even with M in the thousands this remains a tractable problem.

D. CHAPTER SUMMARY

In this chapter a field-based MAP detector is developed for a vector of symbols

where the a priori probabilities are for a field of symbols rather than the individual symbols.

A gain of 2 – 8 dB in field (or sequence) error rate performance is found when a priori

knowledge is used compared to a symbol-by-symbol ML detector. The symbols are assumed

independent, i.e., no ISI and no inter-symbol dependence introduced at the transmitter.

The field-based MAP detector is then extended to multiple signals, where the fields

are restricted to be synchronous. The synchronous joint field-based MAP detector is

demonstrated to have performance gains of 3 – 18 dB when compared to the joint ML

detector. These gains are very dependent on the a priori distributions.

The next chapter develops the Joint Field-based BCJR algorithm for joint field-

based MAP detection using field-based a priori information. This algorithm allows the

computation of a field-by-field MAP estimate where asynchronous cochannel signals in-

troduce a dependency between consecutive fields. It will be seen that in order to make a

decision on a particular field, all of the received data must be examined, not just the data

for the current field.
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VII. JOINT FIELD-BASED MAP DETECTION

In the first half of Chapter VI, the Field-Based MAP Detector is developed for

an individual field of symbols. In the second half of that chapter, the Field-Based MAP

Detector is extended to the Joint Field-Based MAP Detector for the special case of syn-

chronous cochannel signals. For the special case of synchronous cochannel signals, the

optimum MAP detector is developed by observing only the current field. This chapter

extends the work from the second half of Chapter VI to the general case of asynchronous

cochannel signals. For asynchronous signals, the optimal MAP decision can not be made

by observing only the current field; the entire received vector must be used in order to

make optimal MAP decisions.

The development of the Joint Field-Based MAP detector begins with a model of

the multiple signal sources in a form that is compatible with the BCJR algorithm. The

BCJR (or MAP algorithm) is introduced in Chapter II and detailed in Appendix B. The

BCJR algorithm provides a computationally efficient method to calculate the a posteriori

probabilities of the state transitions of a Markov chain based on an entire received vector

of decision statistics. The received signal is passed through a bank of matched filters, one

for each waveform, to generate a vector of decision statistics. The matched filter bank is

followed by a whitening filter which whitens the noise component of the decision statistics,

and creates a causal relation among the decision statistics. The whitened decision statistics

are then passed to a modified Field-Based BCJR Algorithm. The modifications to the

BCJR algorithm involve the generation of a time-varying trellis, modified branch metrics,

and a modified traversal method. Finally the FER performance results for several signal

configurations are presented.

A. SIMILARITY TO JOINT MLSD

The signal model and trellis structure for the Joint Field-Based MAP Detector using

BCJR is similar in many ways to the Joint MLSD [2] discussed in Chapter II. In both

cases a set of matched filters generates decision statistics for each channel such that the

decision statistics for channel i are, in general, correlated with the decision statistics for

channel j. In the description of the Joint MLSD, based on [73] in Chapter II, a modified

branch metric is used, thus eliminating the requirement for a whitening filter. The use
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of a modified branch metric is known as the Ungerboeck approach [54, 55]. For the Joint

Field-based MAP detector it is not immediately obvious how to develop the equivalent

modified branch metrics. Note that [104] does develop the Ungerboeck model for an ISI

channel, but it is still not obvious how to extend this to the time-varying Markov source

that results from cochannel reception. For this reason, a whitening filter is used, similar

to the Forney approach [51, 55]. The whitening filter has an added benefit of creating a

causal discrete-time representation. The output of the whitening filter at sample n is a

function of the current input at sample n, and Ns − 1 +Nc previous input samples, where

Ns is the number of signals and Nc is the channel memory length, assumed here to be

zero. As discussed in Chapter II, the computational complexity of traversing the trellis is

exponential with the sample memory, i.e., exponential with (Ns − 1 +Nc).

B. JOINT FIELD-BASED MAP AND BCJR

As in the previous chapter, a posteriori probabilities are desired for each possible

received field value. Selecting the field value with the maximum a posteriori probability

minimizes the probability of field error:

âk = arg max
ak

[P (ak|y′)],

where ak represents a field value from the kth signal and y′ is the vector of interleaved

matched filter outputs. If the source model can be constructed in such a way that it can

be written as a Markov chain, then the BCJR algorithm can be used to efficiently perform

this calculation.

C. MODEL

Figure 7.1 illustrates the reception of two cochannel signals in AWGN. The symbol

vectors α1 and α2, from signal 1 and 2 respectively, are input to pulse shaping filters

ψ1(t + τ1) and ψ2(t + τ2). The output of the pulse shaping filters along with AWGN is

received at the input to a bank of matched filters. Each filter, h1 and h2, is matched to its

respective pulse shaping filter ψn. The correlated outputs of the two matched filters are
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Figure 7.1: Signal Model

whitened with a whitening filter, and the resulting whitened decision statistics are passed

to a decision algorithm, the Joint Field-Based MAP Algorithm.

To extend this model to a GMSK signal, as used in AIS, one or more of the Laurent

pulses (Appendix A) will be used for ψ. The Laurent pulses have support greater than Ts.

This is a relatively straightforward extension but is left out to simplify the development.

For an example see [68].

Consider the reception of Ns signals in AWGN:

r(t) =
Ns−1∑
k=0

sk(t) + z(t); (7.1)

where sk(t) is the complex baseband representation of a signal, and z(t) is a complex

AWGN process with power spectral density N0. Each signal sk(t) can be represented as a

linear combination of amplitude modulated pulses

sk(t) =
∑

i

Akαk[i]ψk(t− iTs − τk), (7.2)

where the unit-energy signal pulse, ψk(t), is only nonzero on the interval [0, Ts], and τk is

the time offset for signal k, where by convention 0 < τj < τk < Ts, ∀j < k. The amplitude

of the kth signal is represented by Ak.
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The signaling waveforms ψk are, in general, not orthogonal to each other. Let ρ

describe the inner-product of two synchronous (τj = τk) signaling waveforms.

ρ =

∫ ∞

−∞
ψj(t)ψ

∗
k(t) dt (7.3)

Let ρj,k denote the cross-correlation between signaling waveforms corresponding to

the correlation associated with symbol n of signal k and symbol n of signal j, where by

convention τj < τk.

ρj,k =

∫ ∞

−∞
ψj(t)ψ

∗
k(t−∆τ) dt. (7.4)

This corresponds to cross-correlation between the current symbol index of each signal

(regions a and d in Figure 7.2).

Let ρk,j denote the cross-correlation between signaling waveforms corresponding to

the correlation associated with symbol n of signal j and symbol n − 1 of signal k, where

by convention τj < τk.

ρk,j =

∫ ∞

−∞
ψj(t)ψ

∗
k(t+ (Ts −∆τ)) dt (7.5)

This corresponds to the cross-correlation between the current and the past (or future)

symbol index of each signal (regions c and b in Figure 7.2).

The outputs of the set of matched filters at the sample time are

yk[i] =

∫ ∞

−∞
r(t)ψ∗

k(t− iTs − τk) dt, (7.6)

where ψk are the unit-energy1 impulse responses of the underlying signal waveforms used to

generate each signal, sk. The matched filter outputs (y0,y1, . . . ,yNs−1) can be represented

as a linear combination of the individual responses from each signal: the desired response,

plus the response of 2 × (Ns − 1) symbols from the other channels. This is illustrated

in Figure 7.2 for the case of three signals. In the example, the desired response is the

second symbol from the second signal α2[1]. The response of the matched filter has a

contribution from the previous symbol (α3[0]) and current symbol (α3[1]) from Signal 3,

and a contribution from the next symbol (α1[2]) and current symbol (α1[1]) from Signal 1.

These contributions are represented by the regions labeled a, b, c, and d in Figure 7.2.

1The pulse ψk(t) is unit-energy if
∫∞
−∞ ψk(t)ψ∗k(t) dt = 1
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τ1 α1[0]
a

α1[1]
b

α1[2]

τ2 α2[0] α2[1]

Ts

α2[2]

τ3 α3[0]
c d

α3[1] α3[2]

Figure 7.2: Three Asynchronous Cochannel Signals

The contribution of each signal to the output of an individual matched filter is developed

below.

Begin by expanding Equation (7.6) using Equation (7.1) and (7.2) to obtain

yk[n] =

∫ ∞

−∞


Ns∑
j=1

∑
i

Ajαj[i]ψj(t− iTs − τj)︸ ︷︷ ︸
sj

+z(t)


︸ ︷︷ ︸

r(t)

ψ∗k(t− nTs − τk) dt

=
Ns∑
j=1

∑
i

Ajαj[i]

∫ ∞

−∞
ψj(t− iTs − τj)ψ

∗
k(t− nTs − τk) dt

+

∫ ∞

−∞
ψ∗k(t− nTs − τk)z(t) dt

(7.7)

From the finite support of ψ the integral in the double summation of (7.6) can be simplified,

∫ ∞

−∞
ψj(t− iTs − τj)ψ

∗
k(t− nTs − τk) dt =



0 if i < n− 1 or i > n+ 1

1 if j = k, i = n

ρj,k if i = n

ρk,j if j 6= k, i = n+ 1

ρk,j if j 6= k, i = n− 1

(7.8)
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Then Equation (7.8) can be used to simplify the double summation in Equation (7.7) to

obtain

yk[n] = Akαk[i]

+
∑
j<k

Ajαj[n]

∫ Ts

0

ψj(t)ψ
∗
k(t− (τk − τj)) dt︸ ︷︷ ︸

ρj,k

+
∑
j<k

Ajαj[n+ 1]

∫ Ts

0

ψj(t)ψ
∗
k(t− Ts − (τk − τj)) dt︸ ︷︷ ︸

ρk,j

+
∑
j>k

Ajαj[n− 1]

∫ Ts

0

ψj(t)ψ
∗
k(t+ Ts − (τk − τj)) dt︸ ︷︷ ︸

ρk,j

+
∑
j>k

Ajαj[n]

∫ Ts

0

ψj(t)ψ
∗
k(t− (τk − τj)) dt︸ ︷︷ ︸

ρj,k

+ zk[i]

(7.9)

where zk[i] is a complex Gaussian random variable with variance σ2 = N0. The Gaussian

random process formed by interleaving the noise components from the output of each

matched filter is given by z[i] =
[
z1[i] z2[i] z3[i] . . . zNs [i]

]T
, and has autocorrelation

matrices [2]

E{z[i]z∗T [j]} =



σ2RT [1], ifj = i+ 1

σ2RT [0], ifj = i

σ2R∗[1], ifj = i− 1

0 otherwise

(7.10)

where R[i− j] is the (Ns ×Ns) matrix with elements n,m given by [2]

Rn,m[i− j] =

∫ ∞

−∞
ψn(t− iTs − τn)ψ∗m(t− jTs − τm) dt (7.11)
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D. WHITENED MATCHED FILTER

To easily calculate the branch metrics, and to reduce the number of symbols upon

which a decision statistic depends, the decisions statistics are passed through a whitening

filter. Take the Ns length-N vectors of matched filter outputs and interleave them to form

a vector of length-(NsN) matched filter outputs

y′ =
[
y0[0] y1[0] . . . yNs−1[0] y0[1] y1[1] . . . y0[N − 1] y1[N − 1] . . . yNs−1[N − 1]

]T
(7.12)

The idea of the whitening filter is to perform a linear operation on the interleaved vector

y′ that removes the correlation between the noise components.

The interleaved vector of matched filter outputs is written in matrix form as

y′ = RAα′ + z′, (7.13)

where A is the diagonal matrix of signal amplitudes. The vector α′ is the interleaved

vector of length N transmitted symbol vectors

α′ =
[
α0[0] α1[0] . . . αNs−1[0] α0[1] α1[1] . . . α0[N − 1] α1[N − 1] . . . αNs−1[N − 1]

]T
(7.14)

and z′ is the vector of interleaved correlated noise components of the decision statistics y′,

with E{z′z′H} = σ2R. The matrix R is the global NsN ×NsN correlation matrix for the

noise components of the matched filter outputs

R =



R[0] (R[1])T 0 0 . . . 0

R[1] R[0] (R[1])T 0 . . . 0

0 R[1] R[0] (R[1])T . . . 0
. . . . . . . . . . . . . . .

. . .

0 0 0 0 R[1] R[0]


(7.15)

where the elements of the matrices R[0] and R[1] are defined in Equation 7.11.
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For illustration, a 4 × 4 correlation matrix for two signals is given below in Equa-

tion (7.16)

R =


1 ρ12 0 0

ρ12 1 ρ21 0

0 ρ21 1 ρ12

0 0 ρ12 1

 (7.16)

where ρ12 and ρ21 are the cross-correlation coefficients defined in Equation (7.4) and (7.5).

Because the correlation matrix R is positive definite, the Cholesky decomposition

of R can be used to find an upper triangular matrix U , such that R = UUT [103, 105].

The noise components of y′ are then whitened by applying the transformation U−1 to the

interleaved vector of decision statistics defined in Equation (7.13). This transformation

results in a new whitened set of decision statistics y′
w [106]

y′
w = U−1y′

= U−1RAα′ + U−1z′

= U−1UUT Aα′ + U−1z′

= UT Aα′ + z′
w

(7.17)

where z′
w is the whitened version of z′ with E{z′

wz′
w

H} = σ2I, where I is the identity

matrix. Since the matrix U−1 is also an upper triangular matrix [107]; the whitening

transform can be thought of as a noncausal filtering operation. This transformation not

only whitens the noise components of the matched filter outputs, but also generates a new

vector of sufficient statistics y′
w whose signal components are a function of the current

and past Ns − 1 symbols. The causal transform results because the matrix UT is lower

triangular, so the resulting vector is a function of current and past values rather than

current, past and future values. The vector will only depend on Ns − 1 past values, rather

than all past values, because UT is banded2. This is in contrast to the vector y′ whose

elements are also a function of the future Ns − 1 symbols.

This transformation is a time-varying finite impulse response (FIR) filter on the

matched filter outputs y′. The transformation is time-varying because the transformation

2An n× n matrix A with elements ai,j is banded if ai,j = 0 ∀j < i− k1 and ai,j = 0 ∀j > i+ k2 for
some 0 < k1, k2 < n
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Figure 7.3: Nomenclature for Trellis

matrix U−1 is, in general, not Toeplitz. The outputs of the whitened matched filter, y′
w,

may now be modeled as a Markov chain received through an AWGN channel.

E. GENERATION OF THE TRELLIS

The noiseless portion of y′
w can be modeled as a time-varying Markov chain. The

trellis is a tool used to represent the Markov chain as time progresses. The trellis consists

of N + 1 stages, where N is the length of the whitened interleaved decision statistics, y′
w.

Each stage consists of a number of states representing the permutations of the memory of

past transmitted symbols. The memory of each stage is large enough to account for the

ISI or signal overlap, and also to account for the a priori probabilities for the fields. For a

binary alphabet, each state in each stage has no more than two branches connecting it to a

state in the next stage: one branch for each of the two possible symbol values. Each state

in each stage will then have one or more branches connecting to a state from the previous

stage. This is illustrated in Figure 7.3.

The states in the trellis are defined in such a way that the Markov property of the

state transitions is preserved

Pr[λ[n+1] = q|λ[n] = p] = Pr[λ[n+1] = q|λ[n] = pn, λ[n−1] = pn−1, . . . , λ[0] = p0]. (7.18)

For field widths greater than one symbol, this results in a time-varying trellis; this is

illustrated below.
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Table 7.1: Signal 0 Structure

Field Number Width Values / Prior Pairs

0 1 ( 0, 0.5 ) ( 1, 0.5 )
1 3 ( 000, 0.2 ) ( 101, 0.6 ) ( 111, 0.2 )
2 1 ( 0, 0.5 ) ( 1, 0.5 )
3 1 ( 0, 0.5 ) ( 1, 0.5 )

Table 7.2: Signal 1 Structure

Field Number Width Values / Prior Pairs

0 1 ( 1, 0.5 ) ( 0, 0.5 )
1 2 ( 01, 0.5 ) ( 00, 0.5 )
2 1 ( 0, 0.5 ) ( 1, 0.5 )
3 2 ( 00, 0.5 ) ( 11, 0.5 )

Consider two signals with parameters listed in Table 7.1 and Table 7.2. Each signal

contains a various number of fields; each field with a various number of symbols. For each

field there is a set of possible values and associated prior probabilities pk. The signals are

received at a single receiver with their respective time offsets, τ0 and τ1, with τ0 < τ1.

After the whitening filter, outputs at time n is a function of the previous Ns − 1 symbols.

The time-varying trellis is generated in such a way that the Markov property (7.18) is

maintained. This property is maintained if all the overlapping fields of the current symbol

are stored in the current state.

1. Determining the Stage Memory

The formation of the trellis begins by determining the required number of past

symbols represented by a stage (the memory of the stage). This involves looking back

from the current symbol at all of the overlapping fields. The basic algorithm is outlined

in Table 7.4. The algorithm starts with the interleaved vector of whitened matched filter

outputs y′
w. Each value in y′

w is associated with a transition to a new stage in the trellis.

Each value in y′
w is also associated with a specific field of a specific signal. The first symbol

included in the memory for a stage is the first symbol from the set of overlapping fields.

The last symbol to be represented by a stage is the symbol associated with the current

element of y′
w. This results in the M symbols represented by this stage. Next, the number

of unique elements represented by the M symbols must be determined; this is the number

of states.
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As an example of determining the memory of a stage, consider Figure 7.4 based on

the signals listed in Tables 7.1 and 7.2.

• At Stage 4, corresponding to the reception of symbol a1[1] on the Stage 3 to Stage 4

transition, the current field (f1[1]) does not overlap the first symbol in Stage 3 mem-

ory (a1[0]), but the next field (f0[1]) does. Therefore, the first element represented

by this stage remains the same, and the states will represent combinations of the

following symbols: a1[0], a0[1], a1[1].

• At Stage 5, corresponding to the reception of symbol a0[2] on the Stage 4 to Stage 5

transition, the current field (f0[1]) overlaps the first symbol in Stage 4 memory

(a1[0]). Therefore, the first element represented by the stage remains the same. The

states will represent combinations of the following symbols: a1[0], a0[1], a1[1], a0[2].

• At Stage 6, corresponding to the reception of symbol a1[2] on the Stage 5 to Stage 6

transition, field f0[1] is still not complete. Therefore, the states will represent com-

binations of the following symbols: a1[0], a0[1], a1[1], a0[2], a1[2].

• At Stage 7, corresponding to the reception of symbol a0[3] on the Stage 6 to Stage 7

transition, the current field (f0[1]) does not continue, and the next field (f1[2]) is

not a continuation. Therefore, only a0[3] is required in memory; the states will

represent combinations of the following symbol a0[3].

Table 7.3 lists the symbols comprising the memory of each stage based on the two

signals listed in Tables 7.1 and 7.2.

2. Determining the Number of States per Stage

As discussed in Chapter VI, some field values have negligible a priori probability.

Ignoring field values with negligible probability leads to a reduction in the number of states

required when constructing the trellis. An algorithm for determining the number of states

is shown in Table 7.6. The algorithm starts by determining the number of elements as

outlined in Table 7.4. Continuing with the example above, observe from Table 7.3 that the

values stored in a state can span multiple fields. To find the number of states, generate all

possible partial field values based on the symbols of a field represented by the memory of

the current stage. Finally, find the unique words after this masking, and assign a state for

each unique word.
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Figure 7.4: Example Trellis Using Fields Described in Tables 7.1 and 7.2

Table 7.3: Number Of Elements Per Stage

Stage Number Elements

1 a0[0]
2 a1[0]
3 a1[0] a0[1]
4 a1[0] a0[1] a1[1]
5 a1[0] a0[1] a1[1] a0[2]
6 a1[0] a0[1] a1[1] a0[2] a1[2]
7 a0[3]
8 a1[3]
9 a0[4]
10 a0[4] a1[4]
11 a0[4] a1[4] a0[5]
12 a1[5]
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Table 7.4: Determining the number of elements represented by a stage

for all Elements of y′
w do

CurrentFirstElement ⇐ Current Index
OtherFirstElement ⇐ Current Index
if Current Field Continuing then

CurrentFirstElement ⇐ Beginning of current field −1
end if
if Other Field Continuing then

OtherFirstElement ⇐ Beginning of other field −1
end if
FirstElement ⇐ min(OtherFirstElement,CurrentFirstElement)

end for

Table 7.5: Permutations of Field Values for Stage 4

f1[0] f1[1] f0[1]

1 00 000
0 00 000
1 01 000
0 01 000
1 00 101
0 00 101
1 01 101
0 01 101
1 00 111
0 00 111
1 01 111
0 01 111

For example, consider Stage 4 of Figure 7.4 representing the following symbols

a1[0], a0[1], a1[1], this stage contains symbols from fields zero and one from Signal 1 (f1[0],

f1[1]). Stage 4 also contains symbols from Field 1 of Signal 0 (f0[1]). The possible per-

mutations of these three fields with the symbols a1[0], a0[1], a1[1] highlighted, are shown in

Table 7.5 Although there are 12 permutations of field values, Stage 4 only requires four

states; the other permutations of the fields are for symbols that are not contained the

Stage 4 memory.
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Table 7.6: Determining the number of required states for each stage

for all Stages do
Determine number of elements for this stage
Determine the number of unique groups in this set of elements
for all Unique Element of Set do

Assign State Element of Set
end for

end for

3. Making the Branch Connections

Once the values represented by each state are determined, the next step is to make

the branch connections. Table 7.7 summarizes the algorithm for connecting the states from

one stage to the next stage. At each stage this involves a loop through all of the states at

the next stage for each state at the current stage. Working from left to right across the

trellis, at Stage n State p there are at most K branches leaving each state, where K is

the size of the alphabet for the symbols. A particular state represents a permutation of

the received symbols represented by this stage. A branch exists from State p in Stage n

to State q in Stage n + 1 if the mutual symbols in both states are all the same value. If

a particular value for the next symbol does not lead to a field value with a probability

of occurring greater than ε, (pk > ε), then the state transition will not be drawn. The

resulting trellis with branch connections is shown in Figure 7.5. Consider the branches

connecting Stage 8 to Stage 9 in Figure 7.5. There is only one branch leaving State 0. This

is to be interpreted as follows: with the information in State 0 at Stage 8 there is only one

possible value for the next symbol.

F. BRANCH METRIC CALCULATION

The branch metric calculation for the field-based BCJR algorithm requires a slight

modification from the standard method outlined in Appendix B. The term γ represents

the probability of transition from State p at Stage n to State q at Stage n + 1 with the
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Figure 7.5: Resulting Joint MAP Trellis

Table 7.7: Determining the Branch Connections

for all stage do
for all cstate in current stage do

shift current values over one bit
mask off overlapping elements
for all nstate in next stage do

if cstate in current stage contains same elements nstate then
add branch connection

end if
end for

end for
end for
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observation yn. The term γ can be factored as follows:

γn(p, q) = Pr(λ[n+ 1] = q, yn|λ[n] = p)

= Pr(yn|λ[n+ 1] = q, λ[n] = p) Pr(λ[n+ 1] = q|λ[n] = p)︸ ︷︷ ︸
a priori probabilities

(7.19)

where λ[n] is the state at Stage n. The second factor is the a priori probability Pr(ax = a).

The first factor can be rewritten as Pr(yn|sp,q) where sp,q is the output of the channel

uniquely associated with a state transition from p to q. Because the noise components

have been whitened, the conditional probability can be written as

Pr(yn|sp,q) =
1

(2πσ2)1/2
exp

(
−‖yn − sp,q‖2

2σ2

)
, (7.20)

where σ2 is the variance of the noise term from Equation 7.17 and ‖(·)‖2 is the L2-norm.

The modification for field-based BCJR is in the second factor, the a priori prob-

ability Pr(ax = a). The algorithm is provided a priori field probabilities; a specific field

probability is represented by the transition from stage to stage on the last bit of a field. If

the state transition does not represent the last symbol in a field, then this probability is

set to one. The a priori probability for the branch metric could arbitrarily be set to any

constant value for each transition; the effect is removed during normalization. If the state

transition does represent the last symbol in a field, then use the a priori probability for

that field value [108].

G. TRELLIS TRAVERSAL

Trellis traversal is identical to the standard BCJR algorithm detailed in Appendix B.

For the forward pass, the values for α at Stage n and State q are calculated by the following

recursive equation:

αn+1(q) =

Q−1∑
p=0

Pr(λ[n] = p,y<n)︸ ︷︷ ︸
αn(p)

Pr(λ[n+ 1] = q, yn|λ[n] = p)︸ ︷︷ ︸
γn(p,q)

=

Q−1∑
p=0

αn(p)γn(p, q)

(7.21)
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where Q is the number of states at Stage n.

In a similar manner for the backwards pass, the βs at Stage n and State p are given

by the following recursive equation:

βn(p) =

Q−1∑
q=0

Pr(λ[n+ 1] = q, yn|λ[n] = p)︸ ︷︷ ︸
γn(p,q)

Pr(y>n|λ[n+ 1] = q)︸ ︷︷ ︸
βn+1(q)

=

Q−1∑
q=0

γn(p, q)βn+1(q)

(7.22)

where Q is the number of states in the next state at time n+ 1.

After calculating the αs and the βs, the a posteriori probabilities are then given by

Pr(a = ax|y) =

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)/Pr(y)∑
ax∈A

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)/Pr(y)

=

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)∑
ax∈A

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)

(7.23)

where Sx is the set of transitions associated with the specific input ax and ax ∈ A where

A is a finite alphabet.

The effort to preserve the Markov property is only to keep track of the a priori

field probabilities. For example, the received values in y′
w used in the metric for the

values for γ (branch metrics) only depend on the last Ns− 1 symbols placed into the state

and the current symbol. This is the memory from the channel, or equivalently from the

asynchronous overlapping signals. The additional state memory beyond Ns − 1 allows for

book keeping of the a priori probabilities. A consequence of this is that many of the branch

metrics (γ) are identical; they are not be a function of the additional stage memory.

H. RESULTS

This section presents the FER performance results for the Joint Field-Based MAP

Detector. Performance results of the detector are presented for two signals with a simple

structure leading to the Joint MLSD developed in Chapter II. Results are then presented
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for several other more complex signal configurations. Table 7.8 summarizes the cases

investigated in this section.

Table 7.8: Table Summarizing Test Cases

Case Description

A Simple case, equally likely independent symbols, each field is length one
D 3-symbol fields with two equally likely values 0 and 1
F 3-symbol fields with general distributions for field values
B various field widths, various field value distributions

1. Case A:

In this first example the performance of the Joint Field-Based MAP Detector is

demonstrated for the structure of the signals such that it reduces to a joint MLSD.

The structure of the two signals are shown in Table 7.9 and Table 7.10. Each

signal consists of single-symbol fields which take on one of two values with equal a priori

probability. Notice that the structure of the trellis in Figure 7.6 is identical to the structure

of the joint MLSD introduced in Chapter II. This simple structure results for the two signal

case when the fields are only one symbol wide.

a. Signal Offset ∆τ = 0Ts

First, it is necessary to point out that here ∆τ = 0Ts, and there is no ISI

introduced by the transmitter or channel, therefore there is no need for the trellis approach.

The optimum receiver can be developed as in Chapter VI. The example of ∆τ = 0Ts is

used to demonstrate that for this case the algorithm performs equivalently to the method

outlined in Chapter VI. In this first example FER curves are plotted (Figure 7.7) for

field three of single one with various values for the cross-correlation coefficient ρ defined in

Equation (7.3).

Table 7.9: Case A: Signal 0 Structure

Field Number Width Values / Prior Pairs

0 1 ( 0, 0.5 ) ( 1, 0.5 )
1 1 ( 1, 0.5 ) ( 0, 0.5 )
2 1 ( 1, 0.5 ) ( 0, 0.5 )
3 1 ( 1, 0.5 ) ( 0, 0.5 )
4 1 ( 1, 0.5 ) ( 0, 0.5 )

124



Table 7.10: Case A: Signal 1 Structure

Field Number Width Values / Prior Pairs

0 1 ( 1, 0.5 ) ( 0, 0.5 )
1 1 ( 1, 0.5 ) ( 0, 0.5 )
2 1 ( 1, 0.5 ) ( 0, 0.5 )
3 1 ( 1, 0.5 ) ( 0, 0.5 )
4 1 ( 1, 0.5 ) ( 0, 0.5 )

Table 7.11: Case A: Number Of Elements Per Stage

Stage Number Elements

1 a0[0]
2 a1[0]
3 a0[1]
4 a1[1]
5 a0[2]
6 a1[2]
7 a0[3]
8 a1[3]
9 a0[4]
10 a1[4]

Notice that with ρ = 1 the FER is approximately 0.5 (actually it approaches

0.25 for high SNR, of the four possible transmitted pairs only (−1,+1) and (+1,−1) lead to

an ambiguous result that will likely result in an error). Notice that the BER is identical to

the results presented in Chapter II for Joint Detection. For a cross-correlation coefficient

of ρ = 0, the performance is identical to single-channel binary antipodal signaling. For

small cross-correlation coefficient, the FER performance is very close to binary antipodal

signaling.

Figure 7.6: Case A: Trellis
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Figure 7.7: Case A: Joint Field-Based MAP Performance Curves for Various Values of
Correlation Coefficient ρ, synchronous case ∆τ = 0Ts

b. Signal Offset ∆τ = 0.5Ts

With an offset between the two signals reasonable FER performance can be

achieved even with highly correlated signals. This is similar to the example outlined in

Section I.E. Although the two fundamental pulse shapes have a cross-correlation coefficient

of ρ = 1, the time offset leads to ρ12 = ρ21 = 0.5. Because of this, the signals can be

resolved. Figure 7.8 illustrates this for the third field of signal one; even for a cross-

correlation coefficient of 1.0 the FER performance is acceptable.

There is a variation in performance based on the distances from the start

of the packet; in order to make the decision on symbol n, all symbols received prior to n

must not be in error (or there must be an even number of errors). Figure 7.9 presents FER

performance for various field numbers; larger field numbers correspond to greater distances

from the start of a packet. Notice that the error rate is higher for fields that are further

away from the beginning of the packet.
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Figure 7.8: Case A: Joint Field-Based MAP Performance Curves for Various Values of
Correlation Coefficient ρ, asynchronous case ∆τ = 0.5Ts
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Figure 7.9: Joint Field-Based MAP Performance Curves Variation Based on Distance from
Start of Packet Correlation Coefficient ρ = 1, asynchronous case ∆τ = 0.5Ts
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2. Case D:

In this example, the FER performance of the Joint Field-Based MAP Detector for

signals with a fixed field width of three symbols is examined. Each field takes on one of

two possible values, 000 or 001. We might expect the performance in this example to be

very similar to that of the previous section,(VII.H.1); as illustrated below, this is not the

case. The structure of the signals is shown in Tables 7.12 and 7.13. The structure of the

resulting trellis is illustrated in Figure 7.10. Notice the simple state transitions that result

from the signal structure.

Table 7.12: Case D: Signal 0

Field Number Width Values / Prior Pairs

0 3 ( 001, 0.5 ) ( 000, 0.5 )
1 3 ( 001, 0.5 ) ( 000, 0.5 )
2 3 ( 001, 0.5 ) ( 000, 0.5 )
3 3 ( 001, 0.5 ) ( 000, 0.5 )
4 1 ( 0, 1 )

Table 7.13: Case D: Signal 1

Field Number Width Values / Prior Pairs

0 3 ( 001, 0.5 ) ( 000, 0.5 )
1 3 ( 001, 0.5 ) ( 000, 0.5 )
2 3 ( 001, 0.5 ) ( 000, 0.5 )
3 3 ( 001, 0.5 ) ( 000, 0.5 )
4 1 ( 0, 1 )

Figure 7.10: Case D: Trellis
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Table 7.14: Case D: Number Of Elements Per Stage

Stage Number Elements

1 a0[0]
2 a0[0] a1[0]
3 a0[0] a1[0] a0[1]
4 a0[0] a1[0] a0[1] a1[1]
5 a0[0] a1[0] a0[1] a1[1] a0[2]
6 a1[2]
7 a1[2] a0[3]
8 a1[2] a0[3] a1[3]
9 a1[2] a0[3] a1[3] a0[4]
10 a1[2] a0[3] a1[3] a0[4] a1[4]
11 a1[2] a0[3] a1[3] a0[4] a1[4] a0[5]
12 a1[5]
13 a1[5] a0[6]
14 a1[5] a0[6] a1[6]
15 a1[5] a0[6] a1[6] a0[7]
16 a1[5] a0[6] a1[6] a0[7] a1[7]
17 a1[5] a0[6] a1[6] a0[7] a1[7] a0[8]
18 a1[8]
19 a1[8] a0[9]
20 a1[8] a0[9] a1[9]
21 a1[8] a0[9] a1[9] a0[10]
22 a1[8] a0[9] a1[9] a0[10] a1[10]
23 a1[8] a0[9] a1[9] a0[10] a1[10] a0[11]
24 a1[11]
25 a0[12]
26 a1[12]

a. Signal Offset ∆τ = 0Ts

Figure 7.11 presents the FER performance of the Joint Field-Based MAP De-

tector for synchronous signals and various cross-correlation coefficients. The performance

here is identical to the results for Case A presented in Section VII.H.1.

b. Signal Offset ∆τ = 0.5Ts

Figure 7.12 presents the FER performance for Joint Field-Based MAP De-

tector for the asynchronous case for various cross-correlation coefficients. The performance

for this signal structure is superior to the results presented for Case A in Section VII.H.1.
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Figure 7.11: Case D: Joint Field-Based MAP Performance Curves for Various Values of
Correlation Coefficient ρ, synchronous case ∆τ = 0Ts, fixed width fields

The performance is only a fraction of one dB from the antipodal signaling case. The reason

the detector performs so well, even with ρ = 1, is that each of the three bit fields only has

one unknown bit. With an offset between the two signals, ∆τ > 0, the unknown bits in

each field partially overlap the known bits in the other signal.

In Figure 7.13 the FER performance for the Joint Field-Based MAP Detector

are presented for the asynchronous case for various Fields. The dependence of error rate on

distance from the beginning of a packet, in contrast with Case A in the previous section, is

not seen here. For Case A there is a requirement that the previous n fields not be in error;

in this case, because of the known symbols within the fields, there is no such requirement.
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Figure 7.12: Case D: Joint Field-Based MAP Performance Curves for Various Values of
Correlation Coefficient ρ, asynchronous case ∆τ = 0.5Ts
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Figure 7.13: Case D: Joint Field-Based MAP Performance Curves for Various Field Num-
bers Correlation Coefficient ρ = 1, asynchronous case ∆τ = 0.5Ts
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3. Case F:

In this next example the results for a detector with fixed width fields but variable

distributions are presented. The signals, with structure illustrated in Table 7.15 and 7.16,

have field widths identical to Case D presented in Section VII.H.2. As illustrated in

Figure 7.14, this results in a much larger trellis. Figure 7.15 shows the same trellis enlarged

and cropped for legibility.

Table 7.15: Case F: Signal 0

Field Number Width Values / Prior Pairs

0 3 ( 001, 0.2 ) ( 000, 0.5 ) ( 101, 0.3 )
1 3 ( 000, 0.125 ) ( 001, 0.125 ) ( 010, 0.125 )

( 100, 0.125 ) ( 101, 0.125 ) ( 110, 0.125 )
2 3 ( 000, 0.01 ) ( 001, 0.01 ) ( 010, 0.01 )

( 100, 0.1 ) ( 101, 0.6 ) ( 110, 0.1 )
3 3 ( 000, 0.5 ) ( 111, 0.5 )

Table 7.16: Case F: Signal 1

Field Number Width Values / Prior Pairs

0 3 ( 001, 0.5 ) ( 000, 0.5 )
1 3 ( 001, 0.2 ) ( 000, 0.2 ) ( 011, 0.2 )
2 3 ( 000, 0.125 ) ( 001, 0.125 ) ( 010, 0.125 )

( 100, 0.125 ) ( 101, 0.125 ) ( 110, 0.125 )
3 3 ( 001, 0.5 ) ( 000, 0.5 )

a. Signal Offset ∆τ = 0Ts

Figure 7.16 presents the FER performance for Signal 0 Field 3 of the Joint

Field-Based MAP Detector for synchronous signals and various cross-correlation coeffi-

cients. Note from Tables 7.15 and 7.16 that the two fields, Signal 0 Field 3 and Signal 1

Field 3, are further in Euclidean distance than is the case for the signals presented earlier.

This increase in distance reduces the probability of field error.

b. Signal Offset ∆τ = 0.5Ts

Figure 7.17 presents the FER performance for Signal 0 Field 3 of the Joint

Field-Based MAP Detector for asynchronous signals with a separation of ∆τ = 0.5Ts, and

various cross-correlation coefficients. The performance here is slightly better than that
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Figure 7.14: Case F: Full Trellis
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Figure 7.15: Case F: Trellis
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Table 7.17: Case F: Number Of Elements Per Stage

Stage Number Elements

1 a0[0]
2 a0[0] a1[0]
3 a0[0] a1[0] a0[1]
4 a0[0] a1[0] a0[1] a1[1]
5 a0[0] a1[0] a0[1] a1[1] a0[2]
6 a1[2]
7 a1[2] a0[3]
8 a1[2] a0[3] a1[3]
9 a1[2] a0[3] a1[3] a0[4]
10 a1[2] a0[3] a1[3] a0[4] a1[4]
11 a1[2] a0[3] a1[3] a0[4] a1[4] a0[5]
12 a1[5]
13 a1[5] a0[6]
14 a1[5] a0[6] a1[6]
15 a1[5] a0[6] a1[6] a0[7]
16 a1[5] a0[6] a1[6] a0[7] a1[7]
17 a1[5] a0[6] a1[6] a0[7] a1[7] a0[8]
18 a1[8]
19 a1[8] a0[9]
20 a1[8] a0[9] a1[9]
21 a1[8] a0[9] a1[9] a0[10]
22 a1[8] a0[9] a1[9] a0[10] a1[10]
23 a1[8] a0[9] a1[9] a0[10] a1[10] a0[11]
24 a1[11]

of the synchronous case presented above. For this case the FER performance for each

field will depend on the a priori distributions as outlined in Table 7.15 and 7.16. This

variation is illustrated in Figure 7.18 for the synchronous case and in Figure 7.19 for the

asynchronous case.
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Figure 7.16: Case F: Joint Field-Based MAP Performance Curves for Various Values of
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Figure 7.17: Case F: Joint Field-Based MAP Performance Curves for Various Values of
Correlation Coefficient ρ, asynchronous case ∆τ = 0.5Ts
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Figure 7.18: Case F: Joint Field-Based MAP Performance Curves for Various Field Num-
bers Correlation Coefficient ρ = 1, synchronous case ∆τ = 0Ts

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

-5 0 5 10 15 20 25

P
e

Eb/N0 (dB)

Antipodal

chan 0, field 0

chan 1, field 0

chan 1, field 1

chan 1, field 2

chan 0, field 3

chan 1, field 3

Figure 7.19: Case F: Joint Field-Based MAP Performance Curves for Various Field Num-
bers Correlation Coefficient ρ = 1, asynchronous case ∆τ = 0.5Ts
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4. Case B:

In this final example the performance of the Joint Field-Based MAP Detector for

signals with variable field widths is presented.

The structure of the two signals are shown in Table 7.18 and Table 7.19. Each

signal consists of fields of various widths which take on various distributions. Notice that

the structure of the trellis in Figure 7.20 changes for the different field widths and prior

distributions.

Table 7.18: Case B: Signal 0

Field Number Width Values / Prior Pairs

0 1 ( 0, 0.5 ) ( 1, 0.5 )
1 1 ( 0, 0.5 ) ( 1, 0.5 )
2 1 ( 1, 1 )
3 3 ( 000, 0.2 ) ( 101, 0.6 ) ( 111, 0.2 )
4 1 ( 0, 0.5 ) ( 1, 0.5 )
5 1 ( 0, 0.5 ) ( 1, 0.5 )
6 1 ( 0, 0.5 ) ( 1, 0.5 )

Table 7.19: Case B: Signal 1

Field Number Width Values / Prior Pairs

0 1 ( 1, 0.5 ) ( 0, 0.5 )
1 1 ( 1, 0.5 ) ( 0, 0.5 )
2 2 ( 01, 0.5 ) ( 00, 0.5 )
3 1 ( 0, 0.5 ) ( 1, 0.5 )
4 2 ( 00, 0.5 ) ( 11, 0.5 )
5 1 ( 0, 0.5 ) ( 1, 0.5 )
6 1 ( 0, 0.5 ) ( 1, 0.5 )

a. Signal Offset ∆τ = 0Ts

In this first example, FER curves are plotted for one of the fields for the

synchronous case and various values for the cross-correlation coefficient ρ (7.3).

Figure 7.21 illustrates the FER performance for Chan 0 Field 3. The per-

formance here is slightly better than some of the previous cases.
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Table 7.20: Case B: Number Of Elements Per Stage

Stage Number Elements

1 a0[0]
2 a1[0]
3 a0[1]
4 a1[1]
5 a0[2]
6 a0[2] a1[2]
7 a0[2] a1[2] a0[3]
8 a0[2] a1[2] a0[3] a1[3]
9 a1[2] a0[3] a1[3] a0[4]
10 a1[2] a0[3] a1[3] a0[4] a1[4]
11 a0[5]
12 a0[5] a1[5]
13 a0[5] a1[5] a0[6]
14 a1[6]
15 a0[7]
16 a1[7]
17 a0[8]
18 a1[8]

b. Signal Offset ∆τ = 0.5Ts

As in Case A, with an offset between the two signals we can achieve reason-

able FER performance even in the case of highly correlated signals; Figure 7.22 illustrates

this. Also, notice in Figure 7.23 there is not a large variation in performance based on field

number.
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Figure 7.20: Case B: Trellis

140



10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

-5 0 5 10 15 20 25

P
e

Eb/N0 (dB)

Antipodal

ρ = 0.9

ρ = 1.0

ρ = 0.4

ρ = 0.0

Figure 7.21: Case B: Joint Field-Based MAP Performance Curves for Various Values of
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Figure 7.22: Joint Field-Based MAP Performance Curves for Various Values of Correlation
Coefficient ρ, asynchronous case ∆τ = 0.5
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I. CHAPTER SUMMARY

The Joint Field-Based MAP Detector is introduced in this chapter. This detector

optimally incorporates a priori knowledge of variable width field values to aid in joint

detection. The Joint Field-Based MAP detector can also be applied to situations where

knowledge of one of the cochannel signals is very limited. If there is no knowledge about

the field structure of one of the signals the knowledge of the other signals can still be

exploited to aid in recovery. The signal model is developed before and after the whitened

matched filter. We then developed the form of the trellis required to use the BCJR algo-

rithm to generate the MAP estimates. Finally results are presented for nominal scenarios

investigating how the performance varies as the structure of the signals change. These re-

sults demonstrate the potential performance improvement that is possible by incorporating

a priori information into a joint detection algorithm.
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VIII. CONCLUSIONS AND FUTURE WORK

The goal of this work is to investigate methods for efficient recovery of the in-

formation content from low-entropy narrowband cochannel signals. There is significant

prior work in joint detection of narrowband signals [2], but little work has focused on low-

entropy signals. In this dissertation, optimal (minimum probability of field error) methods

are developed to achieve this goal. A summary of the contributions from this work and

suggestions for continued research are presented here.

A. SUMMARY

In Chapter II, the fundamentals of multi-user detection required for describing

joint detection are described. A detailed background of the signaling waveform used in

AIS (GMSK) is provided. A whitened discrete model of the signal is developed using

the Laurent representation of GMSK. The MAP algorithm is then introduced as an effi-

cient method for calculating a posteriori symbol probabilities. A literature review of joint

detection methods is presented, focusing on work by Verdú [2].

In Chapter III, a complete overview of the AIS is presented. The signaling waveform

and the packet structure of the AIS are presented. A link budget is presented demonstrat-

ing that for nominal conditions, a receiver collecting from low earth orbit (approximately

800 km) will not be noise-limited. An example of non-coherent AIS demodulation is pre-

sented showing each step required to recover the transmitted data. The low-entropy prop-

erty of the AIS message is demonstrated with an example. A 168-bit AIS packet is found

to typically contain approximately 20 bits of new information. Finally the SOTDMA algo-

rithm is investigated, and the predictability of subsequent AIS transmissions is presented.

Chapter IV introduces methods of prediction focusing on AIS field values. Three

different candidate predictors for the AIS fields are presented, and tuning parameters for

the predictors are heuristically developed. Further, a novel predictor for the AIS commu-

nications state field is presented, and a demonstration of the performance of a Kalman

filter on AIS latitude and longitude fields.

In Chapter V, MLSD is investigated for a bit-stuffed data source. The bit-stuffing

process is modeled in a form compatible with a trellis representation. With this repre-

sentation, the Viterbi algorithm may be used to find efficiently the most likely sequence.
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The bit-stuffing process is found to be a catastrophic encoding process (a single bit error

leads to a large number of decoder errors). Approximate BER bounds for MLSD of a bit-

stuffed data source are developed. The MLSD is shown to have superior BER performance

compared to symbol-by-symbol decisions (a gain of 0.2 – 1.0 dB for the unstuffed data).

The Field-Based MAP detector is developed in Chapter VI. The performance of this

detector is demonstrated using representative data. The detector is shown to outperform

the symbol-by-symbol ML detector for some example a priori distributions. The detector is

extended to multiple synchronous signals, and the performance of the resulting detector is

presented. The performance gains from Field-Based MAP detection are highly dependent

on the level of a priori information available and, in the joint case, on the correlation

coefficient. The examples in Chapter VI demonstrate a performance improvement of 3 to

18 dB of gain when using joint Field-Based MAP compared to joint symbol-by-symbol

detection.

Finally, Chapter VII develops the Joint Field-based MAP detector for asynchronous

signals. The algorithms provided in this chapter illustrate the construction of a trellis

compatible with the BCJR algorithm ultimately allowing for the calculation of a posteriori

probabilities for transmitted field values. An efficient implementation of the Joint Field-

Based MAP detector is developed and field error rate performance is investigated. The

performance gains here are identical to that of the previous chapter for the synchronous case

(∆τ = 0). For asynchronous signals the results from Chapter VI are not applicable, and the

detector from Chapter VII must be used. For the asynchronous case there are additional

FER performance gains of up to 10 dB, depending heavily on the cross-correlation between

the two signals.

B. CONCLUSIONS

Figure 8.1 gives a “big picture” view of the objective in this work as applied to

remote reception of the AIS. The algorithm begins with some knowledge about existing

ships — this could be very specific information such as a previous position report or very

general, such as “Ship A left Port B at 1300 yesterday.” At the receiver, two or more

signals are received overlapping in frequency and time. The signal parameters for each of

the overlapping signals are estimated. This reception is passed through multiple matched

filters, and each filter is matched to a specific pulse with estimated parameters. The
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Figure 8.1: “Big Picture”

resulting decision statistics are then passed to the Joint Field-Based MAP detector, along

with a priori information derived from previous receptions or other sources. The output

of the decisions from the joint detector are then passed to prediction algorithms for future

receptions. This dissertation develops the important pieces for achieving this goal: the

joint field-based MAP detector, the prediction method for the AIS fields, and the MLSD

for bit-stuffing.

The method depicted in Figure 8.1 is relevant even without a priori information

for each of the simultaneous users. For example, suppose from previous transmissions it is

known that Ship A will transmit on time slot 7. Based upon the reception at time slot 7,

it is determined that there is an additional unknown ship, Ship X, occupying the same

slot. With no knowledge of what Ship X is transmitting the field structure is simply set to

equally likely symbols. The algorithm described in Chapter VII is now applied as before.
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Many ideas from this work may be incorporated into receivers immediately. The

work on MLSD in Chapter V is applicable whenever the source of the data has undergone

bit-stuffing. If a receiver is already using the Viterbi algorithm for detection, the ideas

from Chapter V can be incorporated by modifying the existing trellis. If the receiver is

currently making symbol-by-symbol decisions, the Viterbi algorithm outlined in Chapter V

may be implemented directly. The work in Chapter V demonstrates that a gain in BER

performance of approximately 0.2 – 1.0 dB can be expected by using these techniques.

The work in Chapter VI can be readily extended to any problem where a priori in-

formation exists for sets of symbols. This is applicable to both single- and multiple-channel

receivers. Both the gain in performance and the additional computational complexity will

be very dependent on the particular situation. For example, if it is known that a set of

symbols can take on very few values, then the computational complexity of implementing

the field-based MAP detector is relatively low. If the set of values for a field of symbols

are all separated by something greater than the minimum distance, then the performance

improvement will likely be significant. If the set of possible values is very large, and the

distance between pairs of values is approximately the minimum distance, then the small

performance improvement may not justify the large computational burden of the field-

based MAP detector.

Chapter VII presents a culmination of the ideas from previous chapters. A method

for calculating a posteriori probabilities for a transmitted field is developed. In order to

implement this method of signal recovery the trellis must be set up according to the known

structure and a priori information of the signals. The structure of the trellis will vary as

the information available for the signals changes. For the general case of asynchronous

reception the method illustrated in Chapter VII generates a posteriori field probabilities

leading to the optimal (minimum probability of field error) detector. Gains of up to 10 dB

are seen compared to the synchronous joint detector presented in Chapter VI.

The theoretical work developed in Chapters VI and VII can be put to practical

use as a bound for system performance. The detectors developed are optimal given the
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stated constraints. The FER curves from these chapters can be used as an upper bound

on performance.

C. FUTURE WORK

In performing this research, many areas deserving additional investigation have

been identified. Most of the future work involves solving practical problems. The recom-

mendations can be roughly broken into three categories: FER performance improvement,

parameter estimation, and computation reduction.

The work has been based on the first term of the Laurent decomposition. The trellis

could be extended to use all the pulses, increasing performance. For simplicity, it is assumed

there is no ISI between pulses; this is not true; GMSK introduces ISI. The performance

demonstrated in this dissertation is based on a simplified channel. It is a straightforward

extension to account for the ISI by adding states to the trellis. Furthermore, the MLSD

presented for a bit-stuffed data source in Chapter V could be combined with the joint field-

based maximum a posteriori detector (JFBMAPD), yielding even better FER performance.

For signals that are received with low SNR, summing the soft outputs of a MAP

detector may be used to increase the likelihood of successful demodulation. This is perhaps

more relevant to single-channel low-entropy signals.

In the area of parameter estimation, additional areas for further investigation in-

clude joint carrier-phase and frequency tracking methods. This work assumes a source

of channel state information (phase and frequency estimates). Determining this is non-

trivial. In theory, these parameters could be treated as additional unknown parameters in

the trellis.

In the area of computation reduction, there are a few areas for further investigation.

The optimum detector could be simplified by only searching back one symbol. This is

similar to compressing the priors to one symbol. Looking back only one symbol is not

optimal, but it would be interesting to compare the performance to Joint Field-based

BCJR. There are also many variations on the BCJR algorithm that involve simplifying the

computation [109].
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APPENDIX A. LAURENT REPRESENTATION

The ability to represent a signal as a linear combination of amplitude modulated

pulses greatly simplifies receiver analysis and design. It allows one to build on the theory

available for pulse amplitude modulated signals.

Continuous-phase modulation (CPM) signals are in general nonlinear. CPM signals,

in general, can not be represented as superposition of amplitude modulated pulses. Laurent

[21] shows that for a finite length pulse response g(t), any CPM signal can be written as

a superposition of M = 2L−1 amplitude modulated pulses, where L is the duration of the

finite length pulse, g(t), divided by the symbol period. This is an extension of the well

known representation of MSK as offset quadrature phase shift keying (OQPSK). We begin

with the derivation of the Laurent representation and then follow with two examples.

A. THE LAURENT REPRESENTATION

The discussion below follows from examples in [21, 23]. We start with the complex

envelope representation of a continuous phase modulated signal

z(t) = A exp

(
j

[
θ0 + 2πh

∑
n

αnq(t− nTs)

])
(A.1)

where h is the modulation index, θ0 is an arbitrary constant phase term (assumed 0 here-

after), and A is a constant amplitude term (assumed 1 hereafter). The symbol αn ∈ {−1, 1}
contains the information for the nth bit. The function q(t) is the integrated finite duration

pulse response

q(t) =


0 t < 0∫ t

0
g(τ) dτ 0 ≤ t ≤ LTs

1/2 t > LTs

(A.2)

for integer L and symbol duration Ts. For GMSK, g(t) is a Gaussian pulse shape. For the

case of AIS operating in the “high” setting with a time-bandwidth product of BTs = 0.4,

L can safely be set to 4 without significant loss of energy.
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Now we rewrite Equation (A.1) by extracting the phase contribution from all but

the last L symbols. We then write the contribution of the last L symbols as the product

of exponentials.

z(t) = exp

(
jπh

N−L∑
n=−∞

αn

)
×

L−1∏
i=0

exp (j2πh [αN−iq(t− (N − i)Ts)]) (A.3)

The next step involves rewriting the complex exponential associated with the nth symbol

as the sum of two terms with only the second term depending on the nth symbol αn

exp (j2πh [αnq(t− nTs)]) =
sin(πh− 2πhq(t− nTs))

sin(πh)

+ exp(jπhαn)
sin(2πhq(t− nTs))

sin(πh)

(A.4)

This can be done by recognizing we want the form

sin(πh− β(t− nT )) + γ sin(β(t− nT )) (A.5)

and using trigonometric identities to solve for the coefficients γ and β. We then define a

symmetric generalized phase pulse:

Ψ(t) =

2πhq(t) t < LTs

2πh(1/2− q(t− LTs)) LTs ≤ t
(A.6)

For notational convenience we define the function

Sn(t) =
sin[Ψ(t+ nTs)]

sin(πh)
= S0(t+ nTs) (A.7)

We can now substitute Equation (A.6) and (A.7) in Equation (A.4) to obtain

exp (j [αnΨ(t− nTs)]) = SL−n(t) + exp(jπhαn)S−n(t) (A.8)

We can now use Equation (A.8) in Equation (A.3) to get

z(t) = exp

(
jπh

N−L∑
n=−∞

αn

)
L−1∏
i=0

[Si+L−N(t) + exp(jπhαN−i)Si−N(t)] (A.9)
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The L product terms on the right side of Equation (A.9) can be expanded to a sum of 2L

product terms, (actually 2L−1 from symmetry). Following the notation in [22] we introduce

the index K ∈ {0, . . . , 2L−1 − 1}. We use the notation K(i) ∈ {0, 1} to represent the ith

bit in the binary representation of K

K =
L−1∑
i=0

K(i)2i (A.10)

For example if L = 3 and K = 3, then K(0) = 1, K(1) = 1, and K(2) = 0.

We now group these terms defining what is commonly referred to as the Laurent

pulses.

CK(t) = S0(t)×
L−1∏
i=1

Si+K(i)L(t) (A.11)

Observe the Laurent pulses CK(t) are formed from a product of shifted S0(t) pulses. We

then use the K(i) notation to define the complex phase coefficients

A0,N =
N∑

n=−∞

αn (A.12)

and

AK,N = A0,N −
L−1∑
i=1

K(i)αN−i (A.13)

and express the original CPM signal as a sum of amplitude modulated pulses

z(t) =
∞∑

N=−∞

2L−1−1∑
K=0

exp(jπhAK,N)CK(t− nT ) (A.14)
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B. EXAMPLES

In this section we provide an example of the Laurent representation for MSK and

an example of the Laurent representation for GMSK as used in AIS as defined in [1] using

a reduced number of terms.

1. Laurent Representation for MSK

The Laurent representation for MSK leads to the well known interpretation of MSK

as OQPSK with half sine waves as pulses. For MSK, h = 1/2, L = 1, and the pulse g(t) is

given by

g(t) =

 1
2Ts

0 ≤ t ≤ Ts

0 otherwise
(A.15)

The integrated pulse term q(t) is then

q(t) =


0 t ≤ 0

t
2Ts

0 ≤ t ≤ Ts

1/2 otherwise

(A.16)

The symmetric generalized phase pulse Ψ(t) is given by

Ψ(t) =


πt
2Ts

0 ≤ t < Ts

−π(t−2Ts)
2Ts

Ts ≤ t ≤ 2Ts

0 otherwise

(A.17)

We can use Equation A.7 to find S0 as

S0(t) =

sin
[

πt
2Ts

]
0 ≤ t ≤ 2Ts

0 otherwise
(A.18)

Each of the above signals is shown in Figure A.1
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Figure A.1: Pulse shapes for MSK

For L = 1 the only Laurent pulse is the C0 term C0(t) = S0(t) and the only complex

phase coefficient is A0,N . So for the case of MSK

z(t) =
∞∑

N=−∞

exp(jπhA0,N)C0(t− nT ) (A.19)

which is identical to the OQPSK representation as a superposition of half sine wave pulses.

2. Laurent Representation for AIS

The Laurent representation for GMSK as used in AIS is significantly more involved

than the representation for MSK. We will show that for GMSK with BT = 0.4, h = 0.5,

and L = 4, although 16 terms are required for exact representation, using only the first

one or two terms results in minimal error.
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For GMSK, g(t) is a Gaussian pulse.

g(t) = rect(t/Ts) ∗
1√

2πσ2T 2
s

exp

(
−t2

2σ2T 2
s

)
(A.20)

where ∗ denotes convolution, σ =
√

ln(2)/2πBTs [20], and rect(t) is defined as

rect(t) =

1 |t| < 1/2

0 |t| > 1/2
(A.21)

The pulse response g(t) can be written as a difference of Q functions1,

g(t) =
1

2Ts

[
Q

(
2πBTs

t− Ts/2

Ts

√
ln(2)

)
−Q

(
2πBTs

t+ Ts/2

Ts

√
ln(2)

)]
(A.23)

where BTs is the time-bandwidth product of the pulse response g(t) and B is the 3dB

bandwidth of the Gaussian filter.

Typically g(t) will be truncated to length L depending on the value of BTs such

that g(t) is zero outside the interval [0, LTs] and symmetric around LTs/2.

The integrated pulse term q(t) is then

q(t) =


0 t < 0∫ t

0
g(τ) dτ 0 ≤ t ≤ LTs

1/2 t > LTs

(A.24)

The function Ψ(t) is given by

Ψ(t) =


2πhq(t) 0 ≤ t < LTs

−2πhq(t− 2LTs) LTs ≤ t ≤ 2LTs

0 otherwise

(A.25)

1The Q-function is defined as

Q(t) =
∫ ∞

t

1√
2π
e−τ2/2 dτ (A.22)
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Figure A.2: Pulse shapes for GMSK

We can use Equation A.7 to find S0

S0(t) =

sin(Ψ(t)) 0 ≤ t ≤ 2LTs

0 otherwise
(A.26)

Each of the above signals is shown in Figure A.2

For L = 4 there will be M = 2L−1 = 8 Laurent pulses {Co(t), . . . , C7(t)} which can

be found by evaluating Equation A.11. For illustration, the product terms to form the 8
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Figure A.3: The first four pulses C0,C1,C2, and C3 for the Laurent representation with
L = 4, h = 0.5, BTs = .4

pulses are shown below.

C0(t) =S0(t)× S1(t)× S2(t)× S3(t)

C1(t) =S0(t)× S5(t)× S2(t)× S3(t)

C2(t) =S0(t)× S1(t)× S6(t)× S3(t)

C3(t) =S0(t)× S5(t)× S6(t)× S3(t)

C4(t) =S0(t)× S1(t)× S2(t)× S7(t)

C5(t) =S0(t)× S5(t)× S2(t)× S7(t)

C6(t) =S0(t)× S1(t)× S6(t)× S7(t)

C7(t) =S0(t)× S5(t)× S6(t)× S7(t)

(A.27)

Figure A.3 illustrates the first four Laurent pulses. Notice that the first four Lau-

rent pulses {C0, C1, C2, C3} contain 99.905%, 0.095%, 0.000014%, 0.000014% of the energy

respectively.
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The complex phase coefficients are calculated with Equation A.12 and A.13. For

illustration, the 8 complex phase coefficients are shown below.

A0,N =
N∑

n=−∞

αn

A1,N =
N∑

n=−∞

αn − αN−1

A2,N =
N∑

n=−∞

αn − αN−2

A3,N =
N∑

n=−∞

αn − αN−1 − αN−2

A4,N =
N∑

n=−∞

αn − αN−3

A5,N =
N∑

n=−∞

αn − αN−1 − αN−3

A6,N =
N∑

n=−∞

αn − αN−2 − αN−3

A7,N =
N∑

n=−∞

αn − αN−1 − αN−2 − αN−3

(A.28)

The complex part of z(t) formed using three methods: an integrated phase term,

only the first Laurent pulse, and finally the first and second Laurent pulse. This is shown

in Figure A.4. Notice that using only the first two pulses allows us to match that of the

integrated phase term with a mean squared error (MSE) of only 2.3× 10−6 %. Using only

the first Laurent pulse results in a MSE of only 9.4× 10−2 %.
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APPENDIX B. BCJR ALGORITHM

The MAP algorithm is an efficient algorithm for estimating the a posteriori proba-

bilities of the state transitions of a Markov source. The MAP algorithm, also called BCJR

after the authors Bahl, Cocke, Jelinek and Raviv was originally proposed in [83]. Consider

a sequence of values a ∈ A where A is a finite alphabet. The values a are then mapped

one-to-one to symbols α and passed through a channel with finite impulse response. We

can write the output of a whitened matched filter for this channel as

y[n] =
L−1∑
k=0

α[n]h[k − n] + z[n] (B.1)

where L is the length of the equivalent discrete-time channel h, and z is sampled bandlim-

ited AWGN with variance σ2. The MAP algorithm can be used to calculate the a posteriori

probability Pr(a = ax|y), where ax is a specific element in A.

Note: Throughout this dissertation, α has been used as above to refer to the trans-

mitted symbol. For the remainder of this appendix α is used to represent an auxiliary

probability function following the standard notation for BCJR.

The MAP algorithm is similar to the Viterbi algorithm in that it takes into account

an entire received sequence in making decisions. The key difference is the MAP algorithm

also incorporates a priori information of the transmitted symbols and the outputs of the

MAP algorithm are a posteriori probabilities for each symbol. Where Viterbi selects the

maximum likelihood sequence given a received sequence, MAP generates the a posteriori

probabilities for each symbol given a received sequence.

The assumption for BCJR is the source can be written as a Markov process. Let

λ[n] be the state of the underlying Markov process at time n. The next state λ[n + 1] is

determined by the value of the input and the value of the previous state λ[n]. If we know

the starting state and all the inputs, we know all the state transitions. Similarly, if we

know the state transitions, we know the inputs.

Given a source that generates independent symbols with a set of known a priori

probabilities passed through a memoryless channel, the MAP algorithm provides no ad-

ditional benefit from a symbol-by-symbol MAP detector. The MAP algorithm allows one

161



to take advantage of the dependency among adjacent symbols. In the development of the

BCJR algorithm below we draw on examples in [83], [109], and [108].

In our model, the “encoder” is a FIR filter. We encode the states such that the

Markov property is maintained; i.e., knowledge of the state at time n+1 makes knowledge

of the state at time n or previous times irrelevant.

We start by rewriting the received vector y as the union of prior, current, and future

observations. This allows us to exploit the Markov property to simplify the calculation of

the posterior probabilities.

y = y<n ∪ yn ∪ y>n (B.2)

where y<n, yn, and y>n indicate the prior, current and future observations respectively.

We now define some auxiliary probability functions for notational convenience.

αn(p) = Pr(λ[n] = p,y<n) (B.3)

Equation (B.3) is the probability of being in state p at time n and all of the received values

prior to n.

βn+1(q) = Pr(y>n|λ[n+ 1] = q) (B.4)

Equation (B.4) is the probability of the received sequence of values received after n given

the state at time n+ 1 is q.

γn(p, q) = Pr(λ[n+ 1] = q, yn|λ[n] = p) (B.5)

Equation (B.5) is the probability of the observation at time n and the state being q at time

n+ 1 given a previous state at time n of p.

Using Equation (B.2) and the identity Pr(A|B) = Pr(A,B)/Pr(B) we can write

the posterior probability as

Pr(λ[n] = p, λ[n+ 1] = q|y) = Pr(λ[n] = p, λ[n+ 1] = q,y<n,yn,y>n)/Pr(y) (B.6)
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We now factor (B.6) using the identity Pr(A,B) = Pr(A) Pr(B|A) to get

Pr(λ[n] = p, λ[n+ 1] = q|y) = Pr(λ[n] = p, λ[n+ 1] = q,y<n, yn)×

Pr(y>n|λ[n] = p, λ[n+ 1] = q,y<n, yn)/Pr(y)
(B.7)

The first term in (B.7) can be factored using the same identity to get

Pr(λ[n] = p, λ[n+ 1] = q|y) = Pr(λ[n] = p,y<n)×

Pr(λ[n+ 1] = q, yn|λ[n] = p,y<n)×

Pr(y>n|λ[n] = p, λ[n+ 1] = q,y<n, yn)/Pr(y)

(B.8)

The Markov property says that knowledge of the state at time n renders knowledge

of previous states and previous inputs irrelevant. We can use this property on the second

and third factors on the right hand side of (B.8) to get

Pr(λ[n] = p, λ[n+ 1] = q|y) = Pr(λ[n] = p,y<n)×

Pr(λ[n+ 1] = q, yn|λ[n] = p)×

Pr(y>n|λ[n+ 1] = q)/Pr(y)

(B.9)

We can now rewrite (B.9) in terms of the previously defined α, β, and γ.

Pr(λ[n] = p, λ[n+ 1] = q|y) =αn(p)×

γn(p, q)×

βn+1(q)/Pr(y)

(B.10)

There is a specific input associated with each state transition, but there may be

multiple state transitions associated with each possible input. In other words, there is a

many-to-one mapping of state transitions to inputs and a one-to-many mapping of inputs

to state transitions. In order to find Pr(a = ax|y) we must sum over all the state transitions

associated with the specific input ax.

Pr(a = ax|y) =
∑

(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)/Pr(y) (B.11)
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where Sx is the set of transitions associated with the specific input ax

We can remove the Pr(y) term by recognizing summing over all Pr(a = ax|y) for

all ax ∈ A will equal 1.

∑
ax∈A

Pr(a = ax|y) = 1; (B.12)

We can now rewrite Equation (B.11) as

Pr(a = ax|y) =

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)/Pr(y)∑
ax∈A

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)/Pr(y)

=

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)∑
ax∈A

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)

(B.13)

where the denominator normalizes the probabilities to one.

Both α and β can be calculated recursively. The derivation below of the recursive

calculation of α and β follows [109]. We start by writing out the definition of αn (B.3) at

the next time step.

αn+1(q) = Pr(λ[n+ 1] = q,y<n, yn) (B.14)

the marginal distribution is computed from the joint, Pr(A) =
∑

B∈B Pr(A,B)

αn+1(q) =

Q−1∑
p=0

Pr(λ[n+ 1] = q,y<n, yn, λ[n] = p) (B.15)

where Q is the number of possible states at time n. This is a sum over all possible previous

states.

We now factor the right hand side of Equation B.15 using the identity Pr(A,B) =

Pr(A) Pr(B|A) to get

αn+1(q) =

Q−1∑
p=0

Pr(λ[n] = p,y<n) Pr(λ[n+ 1] = q, yn|λ[n] = p,y<n) (B.16)
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From the Markov property if we know the state at time n, knowledge of values of

y before time n are irrelevant.

αn+1(q) =

Q−1∑
p=0

Pr(λ[n] = p,y<n)︸ ︷︷ ︸
αn(p)

Pr(λ[n+ 1] = q, yn|λ[n] = p)︸ ︷︷ ︸
γn(p,q)

=

Q−1∑
p=0

αn(p)γn(p, q)

(B.17)

An almost identical method can be used to find a backward recursion for determining

β resulting in

βn(p) =

Q−1∑
q=0

Pr(λ[n+ 1] = q, yn|λ[n] = p)︸ ︷︷ ︸
γn(p,q)

Pr(y>n|λ[n+ 1] = q)︸ ︷︷ ︸
βn+1(q)

=

Q−1∑
q=0

γn(p, q)βn+1(q)

(B.18)

where Q is the number of states in the next state at time n+ 1.

The term γ represents the probability of transition from p to q at time n with the

observation yn. We can factor γ

γn(p, q) = Pr(λ[n+ 1] = q, yn|λ[n] = p)

= Pr(yn|λ[n+ 1] = q, λ[n] = p) Pr(λ[n+ 1] = q|λ[n] = p)︸ ︷︷ ︸
a priori probabilities

(B.19)

The second factor is the a priori probability Pr(ax = a). The first factor can be rewritten

as Pr(yn|sp,q) where sp,q is the output of the channel uniquely associated with a state

transition from p to q. For an AWGN channel we can write this as

Pr(yn|sp,q) =
1

(2πσ2)1/2
exp

(
−‖yn − sp,q‖2

2σ2

)
(B.20)

where σ2 is the variance of the noise term from Equation B.1.
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Table B.1: MAP Decoding Algorithm

α0 ⇐ initial α
βN ⇐ initial β
for n = 0 to N − 2 do

for q = 0 to Q− 1 do
αn+1(q) ⇐ Nq

∑Q−1
p=0 αn(p)γn(p, q) {Forward}

end for
end for
for n = N − 2 to 0 do

for p = 0 to Q− 1 do
βn(p) ⇐ Np

∑Q−1
q=0 γn(p, q)βn+1(q) {Backward}

end for
end for
for n = 0 to N − 2 do

for all ax ∈ A do
Pr(a = ax|y) ⇐ Nax

∑
(p,q)∈Sx

αn(p)γn(p, q)βn+1(q)/Pr(y) {a posteriori}
end for

end for

For numerical stability reasons, it is common to normalize both α and β at ev-

ery stage. The effect of the normalization cancels out when calculating the a posteriori

probabilities with Equation (B.13)

A summary of the MAP algorithm for calculating the a posteriori probabilities is

given in Table B.1. The Nx factors in front of the summations are normalizations for each

step such that the αs and βs sum to one for each stage.

In summary the MAP algorithm is an efficient method for calculating the a pos-

teriori probabilities. Observe from Algorithm B.1 that the calculation of the a posteriori

probabilities involves three passes, each pass with roughly N ×Q2 operations.
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